{"title":"Conco-ERNIE: Complex User Intent Detect Model for Smart Healthcare Cognitive Bot","authors":"Bolin Zhang, Zhiying Tu, Shaoshi Hang, Dian-Hui Chu, Xiaofei Xu","doi":"10.1145/3574135","DOIUrl":null,"url":null,"abstract":"The outbreak of Covid-19 has exposed the lack of medical resources, especially the lack of medical personnel. This results in time and space restrictions for medical services, and patients cannot obtain health information all the time and everywhere. Based on the medical knowledge graph, healthcare bots alleviate this burden effectively by providing patients with diagnosis guidance, pre-diagnosis, and post-diagnosis consultation services in the way of human-machine dialogue. However, the medical utterance is more complicated in language structure, and there are complex intention phenomena in semantics. It is a challenge to detect the single intent, multi-intent, and implicit intent of a patient’s utterance. To this end, we create a high-quality annotated Chinese Medical query (utterance) dataset, CMedQ (about 16.8k queries in medical domain which includes single, multiple, and implicit intents). It is hard to detect intent on such a complex dataset through traditional text classification models. Thus, we propose a novel detect model Conco-ERNIE, using concept co-occurrence patterns to enhance the representation of pre-trained model ERNIE. These patterns are mined using Apriori algorithm and will be embedded via Node2Vec. Their features will be aggregated with semantic features into Conco-ERNIE by using an attention module, which can catch user explicit intents and also predict user implicit intents. Experiments on CMedQ demonstrates that Conco-ERNIE achieves outstanding performance over baseline. Based on Conco-ERNIE, we develop an intelligent healthcare bot, MedicalBot. To provide knowledge support for MedicalBot, we also build a Chinese medical graph, CMedKG (about 45k entities and 283k relationships).","PeriodicalId":50911,"journal":{"name":"ACM Transactions on Internet Technology","volume":" ","pages":"1 - 24"},"PeriodicalIF":3.9000,"publicationDate":"2022-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3574135","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
The outbreak of Covid-19 has exposed the lack of medical resources, especially the lack of medical personnel. This results in time and space restrictions for medical services, and patients cannot obtain health information all the time and everywhere. Based on the medical knowledge graph, healthcare bots alleviate this burden effectively by providing patients with diagnosis guidance, pre-diagnosis, and post-diagnosis consultation services in the way of human-machine dialogue. However, the medical utterance is more complicated in language structure, and there are complex intention phenomena in semantics. It is a challenge to detect the single intent, multi-intent, and implicit intent of a patient’s utterance. To this end, we create a high-quality annotated Chinese Medical query (utterance) dataset, CMedQ (about 16.8k queries in medical domain which includes single, multiple, and implicit intents). It is hard to detect intent on such a complex dataset through traditional text classification models. Thus, we propose a novel detect model Conco-ERNIE, using concept co-occurrence patterns to enhance the representation of pre-trained model ERNIE. These patterns are mined using Apriori algorithm and will be embedded via Node2Vec. Their features will be aggregated with semantic features into Conco-ERNIE by using an attention module, which can catch user explicit intents and also predict user implicit intents. Experiments on CMedQ demonstrates that Conco-ERNIE achieves outstanding performance over baseline. Based on Conco-ERNIE, we develop an intelligent healthcare bot, MedicalBot. To provide knowledge support for MedicalBot, we also build a Chinese medical graph, CMedKG (about 45k entities and 283k relationships).
期刊介绍:
ACM Transactions on Internet Technology (TOIT) brings together many computing disciplines including computer software engineering, computer programming languages, middleware, database management, security, knowledge discovery and data mining, networking and distributed systems, communications, performance and scalability etc. TOIT will cover the results and roles of the individual disciplines and the relationshipsamong them.