Structure formation and multistep nucleation in CASTING Al-Mg-Si alloys

IF 1.3 4区 材料科学 Q3 METALLURGY & METALLURGICAL ENGINEERING
O. Trudonoshyn, O. Prach, A. Slyudova, V. Lisovskii
{"title":"Structure formation and multistep nucleation in CASTING Al-Mg-Si alloys","authors":"O. Trudonoshyn, O. Prach, A. Slyudova, V. Lisovskii","doi":"10.1080/13640461.2020.1822632","DOIUrl":null,"url":null,"abstract":"ABSTRACT The process of multistep nucleation during solidification in hypoeutectic Al-Mg-Si casting alloys was investigated. The morphology of the nucleating particles, Mg2Si primary crystals and Al-Mg2Si eutectic, was investigated with scanning electron microscopy (SEM) on polished and deep etched microsections. The mechanism of formation of the Mg2Si crystal was attributed to heterogeneous nucleation on the nucleating particles. It was observed that the majority of the alloys particles found in the studied are oxides. It was established that eutectic Al–Mg2Si in hypoeutectic alloys has the morphology of ‘eutectic crystal’, where one face of the crystal has triangular-spiral morphology. The mechanism of formation of Al-Mg2Si eutectic cells is attributed to epitaxial growth on Mg2Si crystals. The microhardness of the structural components (Mg2Si crystals, α-Al dendrites, Al-Mg2Si eutectic, and Al3Ti crystals) was measured using Vickers hardness tester.","PeriodicalId":13939,"journal":{"name":"International Journal of Cast Metals Research","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/13640461.2020.1822632","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cast Metals Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/13640461.2020.1822632","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 5

Abstract

ABSTRACT The process of multistep nucleation during solidification in hypoeutectic Al-Mg-Si casting alloys was investigated. The morphology of the nucleating particles, Mg2Si primary crystals and Al-Mg2Si eutectic, was investigated with scanning electron microscopy (SEM) on polished and deep etched microsections. The mechanism of formation of the Mg2Si crystal was attributed to heterogeneous nucleation on the nucleating particles. It was observed that the majority of the alloys particles found in the studied are oxides. It was established that eutectic Al–Mg2Si in hypoeutectic alloys has the morphology of ‘eutectic crystal’, where one face of the crystal has triangular-spiral morphology. The mechanism of formation of Al-Mg2Si eutectic cells is attributed to epitaxial growth on Mg2Si crystals. The microhardness of the structural components (Mg2Si crystals, α-Al dendrites, Al-Mg2Si eutectic, and Al3Ti crystals) was measured using Vickers hardness tester.
铸造Al-Mg-Si合金的组织形成和多步形核
研究了亚共晶Al-Mg-Si铸造合金凝固过程中的多步形核过程。用扫描电子显微镜(SEM)在抛光和深蚀刻的微切片上研究了成核颗粒Mg2Si初晶和Al-Mg2Si共晶的形态。Mg2Si晶体的形成机制归因于成核颗粒上的非均匀成核。据观察,在研究中发现的大多数合金颗粒都是氧化物。研究表明,亚共晶合金中的共晶Al–Mg2Si具有“共晶晶体”的形态,其中晶体的一面具有三角形螺旋形态。Al-Mg2Si共晶电池的形成机理是在Mg2Si晶体上外延生长。用维氏硬度计测量了结构成分(Mg2Si晶体、α-Al枝晶、Al-Mg2Si共晶和Al3Ti晶体)的显微硬度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.70
自引率
7.10%
发文量
14
审稿时长
7.5 months
期刊介绍: The International Journal of Cast Metals Research is devoted to the dissemination of peer reviewed information on the science and engineering of cast metals, solidification and casting processes. Assured production of high integrity castings requires an integrated approach that optimises casting, mould and gating design; mould materials and binders; alloy composition and microstructure; metal melting, modification and handling; dimensional control; and finishing and post-treatment of the casting. The Journal reports advances in both the fundamental science and materials and production engineering contributing to the successful manufacture of fit for purpose castings.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信