{"title":"Collisions in Classical Mechanics in Terms of Mass-Momentum “Vectors” with Galilean Transformations","authors":"A. Ogura","doi":"10.4236/wjm.2020.1010011","DOIUrl":null,"url":null,"abstract":"We present the usefulness of mass-momentum “vectors” to analyze the collision problems in classical mechanics for both one and two dimensions with Galilean transformations. The Galilean transformations connect the mass-momentum “vectors” in the center-of-mass and the laboratory systems. We show that just moving the two systems to and fro, we obtain the final states in the laboratory systems. This gives a simple way of obtaining them, in contrast with the usual way in which we have to solve the simultaneous equations. For one dimensional collision, the coefficient of restitution is introduced in the center-of-mass system. This clearly shows the meaning of the coefficient of restitution. For two dimensional collisions, we only discuss the elastic collision case. We also discuss the case of which the target particle is at rest before the collision. In addition to this, we discuss the case of which the two particles have the same masses.","PeriodicalId":70106,"journal":{"name":"力学国际期刊(英文)","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"力学国际期刊(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.4236/wjm.2020.1010011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
We present the usefulness of mass-momentum “vectors” to analyze the collision problems in classical mechanics for both one and two dimensions with Galilean transformations. The Galilean transformations connect the mass-momentum “vectors” in the center-of-mass and the laboratory systems. We show that just moving the two systems to and fro, we obtain the final states in the laboratory systems. This gives a simple way of obtaining them, in contrast with the usual way in which we have to solve the simultaneous equations. For one dimensional collision, the coefficient of restitution is introduced in the center-of-mass system. This clearly shows the meaning of the coefficient of restitution. For two dimensional collisions, we only discuss the elastic collision case. We also discuss the case of which the target particle is at rest before the collision. In addition to this, we discuss the case of which the two particles have the same masses.