Random Branching and Cross-linking of Polymer Chains, Analytical Functions for the Bivariate Molecular Weight Distributions

IF 1.8 4区 工程技术 Q3 POLYMER SCIENCE
Rolf Bachmann, Marcel Klinger, Jan Meyer
{"title":"Random Branching and Cross-linking of Polymer Chains, Analytical Functions for the Bivariate Molecular Weight Distributions","authors":"Rolf Bachmann,&nbsp;Marcel Klinger,&nbsp;Jan Meyer","doi":"10.1002/mats.202200062","DOIUrl":null,"url":null,"abstract":"<p>Cross-linking and branching of primary polymer molecules are investigated using the Galton–Watson (GW) process. Starting with the probability generating function (pgf) of the primary molecular weight distribution (MWD), analytical expressions are derived for the bivariate pgfs <i>g</i>(<i>n</i><sub>br</sub>, <i>s</i>) of branched polymers which depend also on the number of branch points <i>n</i><sub>br</sub>. The bivariate MWDs <i>n</i>(<i>n</i><sub>br</sub>, <i>i</i>) (<i>i</i>: number of molecular units) are then derived as Taylor expansions in s. All three cases of random branching: X-shaped (cross-linking), T-shaped (only one end takes part in the branching process), and H-shaped (both ends can take part in the branching process) are treated. An extension of the formalism does not require the construction of the pgf and allows the direct use of the MWD of the primary chains. However, using pgfs allows to go past the gel point and to determine the MWD and content of the sol. Explicit expressions are given for special distributions: the mono modal, the most probable, the Schulz-Zimm, the Poisson, and the Catalan distribution for the cases of X-shaped and T-shaped branching.</p>","PeriodicalId":18157,"journal":{"name":"Macromolecular Theory and Simulations","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mats.202200062","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-linking and branching of primary polymer molecules are investigated using the Galton–Watson (GW) process. Starting with the probability generating function (pgf) of the primary molecular weight distribution (MWD), analytical expressions are derived for the bivariate pgfs g(nbr, s) of branched polymers which depend also on the number of branch points nbr. The bivariate MWDs n(nbr, i) (i: number of molecular units) are then derived as Taylor expansions in s. All three cases of random branching: X-shaped (cross-linking), T-shaped (only one end takes part in the branching process), and H-shaped (both ends can take part in the branching process) are treated. An extension of the formalism does not require the construction of the pgf and allows the direct use of the MWD of the primary chains. However, using pgfs allows to go past the gel point and to determine the MWD and content of the sol. Explicit expressions are given for special distributions: the mono modal, the most probable, the Schulz-Zimm, the Poisson, and the Catalan distribution for the cases of X-shaped and T-shaped branching.

Abstract Image

聚合物链的随机分支和交联,二元分子量分布的分析函数
利用高尔顿-沃森(Galton-Watson, GW)工艺研究了原生聚合物分子的交联和支化。从初始分子量分布(MWD)的概率生成函数(pgf)出发,导出了支化聚合物的二元概率生成函数g(nbr, s)的解析表达式,该表达式还依赖于支点个数nbr。然后将二元mwd n(nbr, i) (i:分子单元数)导出为s中的Taylor展开式。随机分支的所有三种情况:x形(交联),t形(只有一端参与分支过程)和h形(两端都可以参与分支过程)都进行了处理。形式主义的扩展不需要构造pgf,并允许直接使用主链的MWD。然而,使用pgfs可以越过凝胶点并确定MWD和溶胶的含量。对于特殊分布给出了显式表达式:单峰分布、最可能分布、舒尔茨-齐姆分布、泊松分布和x形和t形分支的加泰罗尼亚分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Macromolecular Theory and Simulations
Macromolecular Theory and Simulations 工程技术-高分子科学
CiteScore
3.00
自引率
14.30%
发文量
45
审稿时长
2 months
期刊介绍: Macromolecular Theory and Simulations is the only high-quality polymer science journal dedicated exclusively to theory and simulations, covering all aspects from macromolecular theory to advanced computer simulation techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信