Ruoque Shen, Jiefang Dong, Wenping Yuan, Wei Han, Tao Ye, Wenzhi Zhao
{"title":"A 30 m Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images","authors":"Ruoque Shen, Jiefang Dong, Wenping Yuan, Wei Han, Tao Ye, Wenzhi Zhao","doi":"10.34133/2022/9846712","DOIUrl":null,"url":null,"abstract":"As the second largest producer of maize, China contributes 23% of global maize production and plays an important role in guaranteeing maize markets stability. In spite of its importance, there is no 30 m spatial resolution distribution map of maize for all of China. This study used a time-weighted dynamic time warping method to identify planting areas of maize by comparing the similarity of time series of a satellite-based vegetation index at each pixel with a standard time series derived from known maize fields and mapped maize distribution from 2016 to 2020 over 22 provinces accounting for more than 99% of the maize planting area in China. Based on 18800 field-surveyed pixels at 30-meter spatial resolution, the distribution map yields 76.15% and 81.59% of producer’s and user’s accuracies averaged over the entire investigated provinces, respectively. Municipality- and county-level census data also show a good performance in reproducing the spatial distribution of maize. This study provides an approach to mapping maize over large areas based on a small volume of field survey data.","PeriodicalId":38304,"journal":{"name":"遥感学报","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"遥感学报","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.34133/2022/9846712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12
Abstract
As the second largest producer of maize, China contributes 23% of global maize production and plays an important role in guaranteeing maize markets stability. In spite of its importance, there is no 30 m spatial resolution distribution map of maize for all of China. This study used a time-weighted dynamic time warping method to identify planting areas of maize by comparing the similarity of time series of a satellite-based vegetation index at each pixel with a standard time series derived from known maize fields and mapped maize distribution from 2016 to 2020 over 22 provinces accounting for more than 99% of the maize planting area in China. Based on 18800 field-surveyed pixels at 30-meter spatial resolution, the distribution map yields 76.15% and 81.59% of producer’s and user’s accuracies averaged over the entire investigated provinces, respectively. Municipality- and county-level census data also show a good performance in reproducing the spatial distribution of maize. This study provides an approach to mapping maize over large areas based on a small volume of field survey data.
遥感学报Social Sciences-Geography, Planning and Development
CiteScore
3.60
自引率
0.00%
发文量
3200
期刊介绍:
The predecessor of Journal of Remote Sensing is Remote Sensing of Environment, which was founded in 1986. It was born in the beginning of China's remote sensing career and is the first remote sensing journal that has grown up with the development of China's remote sensing career. Since its inception, the Journal of Remote Sensing has published a large number of the latest scientific research results in China and the results of nationally-supported research projects in the light of the priorities and needs of China's remote sensing endeavours at different times, playing a great role in the development of remote sensing science and technology and the cultivation of talents in China, and becoming the most influential academic journal in the field of remote sensing and geographic information science in China.
As the only national comprehensive academic journal in the field of remote sensing in China, Journal of Remote Sensing is dedicated to reporting the research reports, stage-by-stage research briefs and high-level reviews in the field of remote sensing and its related disciplines with international and domestic advanced level. It focuses on new concepts, results and progress in this field. It covers the basic theories of remote sensing, the development of remote sensing technology and the application of remote sensing in the fields of agriculture, forestry, hydrology, geology, mining, oceanography, mapping and other resource and environmental fields as well as in disaster monitoring, research on geographic information systems (GIS), and the integration of remote sensing with GIS and the Global Navigation Satellite System (GNSS) and its applications.