Two Steps at a Time---Taking GAN Training in Stride with Tseng's Method

IF 1.9 Q1 MATHEMATICS, APPLIED
A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț
{"title":"Two Steps at a Time---Taking GAN Training in Stride with Tseng's Method","authors":"A. Böhm, Michael Sedlmayer, E. R. Csetnek, R. Boț","doi":"10.1137/21m1420939","DOIUrl":null,"url":null,"abstract":"Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \\emph{monotone operator} theory, in particular the \\emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \\emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\\mathcal{O}(1/k)$ and $\\mathcal{O}(1/\\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.","PeriodicalId":74797,"journal":{"name":"SIAM journal on mathematics of data science","volume":"1 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2020-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM journal on mathematics of data science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21m1420939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 13

Abstract

Motivated by the training of Generative Adversarial Networks (GANs), we study methods for solving minimax problems with additional nonsmooth regularizers. We do so by employing \emph{monotone operator} theory, in particular the \emph{Forward-Backward-Forward (FBF)} method, which avoids the known issue of limit cycling by correcting each update by a second gradient evaluation. Furthermore, we propose a seemingly new scheme which recycles old gradients to mitigate the additional computational cost. In doing so we rediscover a known method, related to \emph{Optimistic Gradient Descent Ascent (OGDA)}. For both schemes we prove novel convergence rates for convex-concave minimax problems via a unifying approach. The derived error bounds are in terms of the gap function for the ergodic iterates. For the deterministic and the stochastic problem we show a convergence rate of $\mathcal{O}(1/k)$ and $\mathcal{O}(1/\sqrt{k})$, respectively. We complement our theoretical results with empirical improvements in the training of Wasserstein GANs on the CIFAR10 dataset.
一次两步——用曾氏方法进行GAN训练
受生成对抗网络(GANs)训练的启发,我们研究了带有附加非光滑正则器的极大极小问题的求解方法。我们通过使用\emph{单调算子}理论,特别是\emph{前-后-前(FBF)}方法来做到这一点,该方法通过第二次梯度评估来纠正每次更新,从而避免了已知的极限循环问题。此外,我们提出了一个看似新的方案,回收旧的梯度,以减少额外的计算成本。在此过程中,我们重新发现了一种已知的方法,与\emph{乐观梯度下降上升(OGDA)}相关。对于这两种方案,我们通过统一的方法证明了凸凹极小极大问题的新的收敛速率。导出的误差边界是根据遍历迭代的间隙函数。对于确定性问题和随机问题,我们分别给出了$\mathcal{O}(1/k)$和$\mathcal{O}(1/\sqrt{k})$的收敛率。我们通过在CIFAR10数据集上训练Wasserstein gan的经验改进来补充我们的理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信