M. Galochkina, A. Cohen, D. Oppo, N. Mollica, F. Horton
{"title":"Coral Sr‐U Thermometry Tracks Ocean Temperature and Reconciles Sr/Ca Discrepancies Caused by Rayleigh Fractionation","authors":"M. Galochkina, A. Cohen, D. Oppo, N. Mollica, F. Horton","doi":"10.1029/2022PA004541","DOIUrl":null,"url":null,"abstract":"Understanding climate change at the spatiotemporal scales necessary to improve climate projections requires proxy records that complement sparse and often contradictory observational temperature data sets. Massive long‐lived corals have tremendous potential in this regard, continuously recording information about ocean conditions as they grow. Nevertheless, extracting accurate ocean temperatures from corals is challenging because factors other than temperature influence skeletal chemistry. Here, we tested the ability of the coral Sr‐U thermometer to accurately capture annual sea surface temperatures (SSTs) in the subtropical Atlantic, where year‐to‐year temperatures vary by ∼1°C. Using laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS), we generated sufficient U/Ca – Sr/Ca pairs from a slow‐growing (1−2 mm/yr) Siderastrea siderea coral to calculate annual Sr‐U values. With the fine‐scale spatial resolution attained using the laser, skeleton accreted during both fast and slow growing times of the year was represented in our sampling. The resulting 30‐year‐long Sr‐U record tracked the amplitude and timing of annual SST to within ±0.2°C of observations (r = −0.71), whereas the Sr/Ca record did not (r = 0.23). Furthermore, Sr‐U corrected for Sr/Ca offsets among adjacent skeletal elements approximately 1 mm apart. These offsets are equivalent to differences of 2–3°C if typical Sr/Ca–SST calibrations are applied. Our observations indicate that Sr‐U can accurately constrain decadal‐to‐multidecadal variability and secular SST trends in regions where this information is urgently needed.","PeriodicalId":54239,"journal":{"name":"Paleoceanography and Paleoclimatology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Paleoceanography and Paleoclimatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1029/2022PA004541","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding climate change at the spatiotemporal scales necessary to improve climate projections requires proxy records that complement sparse and often contradictory observational temperature data sets. Massive long‐lived corals have tremendous potential in this regard, continuously recording information about ocean conditions as they grow. Nevertheless, extracting accurate ocean temperatures from corals is challenging because factors other than temperature influence skeletal chemistry. Here, we tested the ability of the coral Sr‐U thermometer to accurately capture annual sea surface temperatures (SSTs) in the subtropical Atlantic, where year‐to‐year temperatures vary by ∼1°C. Using laser ablation inductively coupled plasma mass spectrometry (LA‐ICP‐MS), we generated sufficient U/Ca – Sr/Ca pairs from a slow‐growing (1−2 mm/yr) Siderastrea siderea coral to calculate annual Sr‐U values. With the fine‐scale spatial resolution attained using the laser, skeleton accreted during both fast and slow growing times of the year was represented in our sampling. The resulting 30‐year‐long Sr‐U record tracked the amplitude and timing of annual SST to within ±0.2°C of observations (r = −0.71), whereas the Sr/Ca record did not (r = 0.23). Furthermore, Sr‐U corrected for Sr/Ca offsets among adjacent skeletal elements approximately 1 mm apart. These offsets are equivalent to differences of 2–3°C if typical Sr/Ca–SST calibrations are applied. Our observations indicate that Sr‐U can accurately constrain decadal‐to‐multidecadal variability and secular SST trends in regions where this information is urgently needed.
期刊介绍:
Paleoceanography and Paleoclimatology (PALO) publishes papers dealing with records of past environments, biota and climate. Understanding of the Earth system as it was in the past requires the employment of a wide range of approaches including marine and lacustrine sedimentology and speleothems; ice sheet formation and flow; stable isotope, trace element, and organic geochemistry; paleontology and molecular paleontology; evolutionary processes; mineralization in organisms; understanding tree-ring formation; seismic stratigraphy; physical, chemical, and biological oceanography; geochemical, climate and earth system modeling, and many others. The scope of this journal is regional to global, rather than local, and includes studies of any geologic age (Precambrian to Quaternary, including modern analogs). Within this framework, papers on the following topics are to be included: chronology, stratigraphy (where relevant to correlation of paleoceanographic events), paleoreconstructions, paleoceanographic modeling, paleocirculation (deep, intermediate, and shallow), paleoclimatology (e.g., paleowinds and cryosphere history), global sediment and geochemical cycles, anoxia, sea level changes and effects, relations between biotic evolution and paleoceanography, biotic crises, paleobiology (e.g., ecology of “microfossils” used in paleoceanography), techniques and approaches in paleoceanographic inferences, and modern paleoceanographic analogs, and quantitative and integrative analysis of coupled ocean-atmosphere-biosphere processes. Paleoceanographic and Paleoclimate studies enable us to use the past in order to gain information on possible future climatic and biotic developments: the past is the key to the future, just as much and maybe more than the present is the key to the past.