Regional and Global Scale Challenges for Controlling Arsenic Contamination in Agricultural Soil, Water Supplies, Foods and Ayurvedic Medicines

IF 1.1 Q4 CHEMISTRY, ANALYTICAL
V. Mihucz
{"title":"Regional and Global Scale Challenges for Controlling Arsenic Contamination in Agricultural Soil, Water Supplies, Foods and Ayurvedic Medicines","authors":"V. Mihucz","doi":"10.30744/brjac.2179-3425.rv-119-2021","DOIUrl":null,"url":null,"abstract":"Arsenic is naturally present at high concentration levels in aquifers adversely affecting the life of some 200 million people in a number of countries on four continents. Human exposure to As from dietary sources such as marine fish, seafood, poultry, cereals is generally much lower compared to exposure through drinking contaminated water, using contaminated water in food preparation and irrigation of crops. Arsenic toxicity depends on its four valences [As(-III), As0, As(III) and As(V)] and chemical compounds. Thus, in seafood, As is mainly found in its less toxic organic forms. The qualitative and quantitative determinations of individual As species are crucial to understand the environmental fate and behavior of As. The aim of the present review is to give a brief overview on the main As speciation methods and to present how to control As contamination at local and global scales in several environmental (soil, waters) and biological (crops, basic and processed food) samples, as well as complementary and alternative medicinal products marketed as food supplements. In terms of chromatographic separation, emphasis is placed on separation by thin layer chromatography and solid phase extraction. Some approaches to address As contamination (e.g., stabilization in soil, provision of a safe water supply in affected communities) at global and regional scales are also presented.","PeriodicalId":9115,"journal":{"name":"Brazilian Journal of Analytical Chemistry","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Analytical Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30744/brjac.2179-3425.rv-119-2021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Arsenic is naturally present at high concentration levels in aquifers adversely affecting the life of some 200 million people in a number of countries on four continents. Human exposure to As from dietary sources such as marine fish, seafood, poultry, cereals is generally much lower compared to exposure through drinking contaminated water, using contaminated water in food preparation and irrigation of crops. Arsenic toxicity depends on its four valences [As(-III), As0, As(III) and As(V)] and chemical compounds. Thus, in seafood, As is mainly found in its less toxic organic forms. The qualitative and quantitative determinations of individual As species are crucial to understand the environmental fate and behavior of As. The aim of the present review is to give a brief overview on the main As speciation methods and to present how to control As contamination at local and global scales in several environmental (soil, waters) and biological (crops, basic and processed food) samples, as well as complementary and alternative medicinal products marketed as food supplements. In terms of chromatographic separation, emphasis is placed on separation by thin layer chromatography and solid phase extraction. Some approaches to address As contamination (e.g., stabilization in soil, provision of a safe water supply in affected communities) at global and regional scales are also presented.
控制农业土壤、供水、食品和阿育吠陀药物中砷污染的区域和全球挑战
砷在含水层中自然存在,浓度很高,对四大洲一些国家约2亿人的生活产生不利影响。与饮用受污染的水、在食品制备和作物灌溉中使用受污染的水源相比,人类从海鱼、海鲜、家禽、谷物等饮食来源接触砷的几率通常要低得多。砷的毒性取决于它的四个价态[As(III),As0,As(III)和As(V)]和化合物。因此,在海产品中,砷主要以毒性较小的有机形式存在。对单个As物种的定性和定量测定对于了解As的环境命运和行为至关重要。本综述的目的是简要概述砷的主要物种形成方法,并介绍如何在地方和全球范围内控制几种环境(土壤、水域)和生物(作物、基本和加工食品)样品中的砷污染,以及作为食品补充剂销售的补充和替代药品。在色谱分离方面,重点是通过薄层色谱和固相萃取进行分离。还介绍了在全球和区域范围内解决砷污染的一些方法(例如,稳定土壤,为受影响社区提供安全供水)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
46
期刊介绍: BrJAC is dedicated to the diffusion of significant and original knowledge in all branches of Analytical Chemistry, and is addressed to professionals involved in science, technology and innovation projects at universities, research centers and in industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信