The influence of interaction between orthogonal magnetic fibers on the capture of Fe-based fine particles by each fiber

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Li’an Zhang, Y. Diao, M. Chu, Jie Jiang, Henggen Shen
{"title":"The influence of interaction between orthogonal magnetic fibers on the capture of Fe-based fine particles by each fiber","authors":"Li’an Zhang, Y. Diao, M. Chu, Jie Jiang, Henggen Shen","doi":"10.1177/15589250221093030","DOIUrl":null,"url":null,"abstract":"In this work, an existing method of capturing Fe-based fine particles by magnetic fiber is improved, and a weaving method for the fiber filter material is further determined. Different combinations of magnetic fields could form around the magnetic fibers, which change the interaction between orthogonal magnetic fibers when a uniform magnetic field is applied along the X-, Y-, and Z-axes. Therefore, the process of particle capture by the orthogonal magnetic fibers under three configurations was compared using the computational fluid dynamics-discrete phase model (CFD-DPM) and a special user-defined function (UDF) of the magnetic force. The results show that the interaction between orthogonal magnetic fibers could either inhibit or promote the capture of Fe-based fine particles by adjacent magnetic fibers. In industrial production, the magnetic filter material is suitable for the weaving method for the alternate use of magnetic and traditional fibers. When a uniform magnetic field is applied along the X-axis, this weaving method makes the capturing performance of orthogonal magnetic fiber best. Moreover, the magnetic characteristics, flow characteristics, and combination sequence of magnetic fields should be considered. This study provides scientific researchers with new insights for the development of novel high-efficiency fibrous filters to reduce particulate pollutants emissions.","PeriodicalId":15718,"journal":{"name":"Journal of Engineered Fibers and Fabrics","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineered Fibers and Fabrics","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/15589250221093030","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 2

Abstract

In this work, an existing method of capturing Fe-based fine particles by magnetic fiber is improved, and a weaving method for the fiber filter material is further determined. Different combinations of magnetic fields could form around the magnetic fibers, which change the interaction between orthogonal magnetic fibers when a uniform magnetic field is applied along the X-, Y-, and Z-axes. Therefore, the process of particle capture by the orthogonal magnetic fibers under three configurations was compared using the computational fluid dynamics-discrete phase model (CFD-DPM) and a special user-defined function (UDF) of the magnetic force. The results show that the interaction between orthogonal magnetic fibers could either inhibit or promote the capture of Fe-based fine particles by adjacent magnetic fibers. In industrial production, the magnetic filter material is suitable for the weaving method for the alternate use of magnetic and traditional fibers. When a uniform magnetic field is applied along the X-axis, this weaving method makes the capturing performance of orthogonal magnetic fiber best. Moreover, the magnetic characteristics, flow characteristics, and combination sequence of magnetic fields should be considered. This study provides scientific researchers with new insights for the development of novel high-efficiency fibrous filters to reduce particulate pollutants emissions.
正交磁纤维间的相互作用对各纤维捕获铁基细颗粒的影响
本工作对现有的磁性纤维捕获铁基细颗粒的方法进行了改进,并进一步确定了纤维过滤材料的编织方法。当沿X、Y和z轴施加均匀磁场时,磁性纤维周围会形成不同的磁场组合,从而改变正交磁性纤维之间的相互作用。因此,采用计算流体动力学离散相模型(CFD-DPM)和特殊的磁力自定义函数(UDF)对正交磁纤维在三种构型下的粒子捕获过程进行了比较。结果表明,正交磁纤维之间的相互作用可以抑制或促进相邻磁纤维对铁基细颗粒的捕获。在工业生产中,磁性滤料适用于磁性纤维与传统纤维交替使用的织造方法。当沿x轴方向施加均匀磁场时,这种编织方法使正交磁性纤维的捕获性能最好。此外,还应考虑磁特性、流特性和磁场的组合顺序。该研究为科学研究人员开发新型高效纤维过滤器以减少颗粒污染物的排放提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Engineered Fibers and Fabrics
Journal of Engineered Fibers and Fabrics 工程技术-材料科学:纺织
CiteScore
5.00
自引率
6.90%
发文量
41
审稿时长
4 months
期刊介绍: Journal of Engineered Fibers and Fabrics is a peer-reviewed, open access journal which aims to facilitate the rapid and wide dissemination of research in the engineering of textiles, clothing and fiber based structures.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信