Helmholtz Solutions for the Fractional Laplacian and Other Related Operators

IF 1.2 2区 数学 Q1 MATHEMATICS
Vincent Guan, M. Murugan, Juncheng Wei
{"title":"Helmholtz Solutions for the Fractional Laplacian and Other Related Operators","authors":"Vincent Guan, M. Murugan, Juncheng Wei","doi":"10.1142/S021919972250016X","DOIUrl":null,"url":null,"abstract":"We show that the bounded solutions to the fractional Helmholtz equation, $(-\\Delta)^s u= u$ for $0<s<1$ in $\\mathbb{R}^n$, are given by the bounded solutions to the classical Helmholtz equation $(-\\Delta)u= u$ in $\\mathbb{R}^n$ for $n \\ge 2$ when $u$ is additionally assumed to be vanishing at $\\infty$. When $n=1$, we show that the bounded fractional Helmholtz solutions are again given by the classical solutions $A\\cos{x} + B\\sin{x}$. We show that this classification of fractional Helmholtz solutions extends for $1<s \\le 2$ and $s\\in \\mathbb{N}$ when $u \\in C^\\infty(\\mathbb{R}^n)$. Finally, we prove that the classical solutions are the unique bounded solutions to the more general equation $\\psi(-\\Delta) u= \\psi(1)u$ in $\\mathbb{R}^n$, when $\\psi$ is complete Bernstein and certain regularity conditions are imposed on the associated weight $a(t)$.","PeriodicalId":50660,"journal":{"name":"Communications in Contemporary Mathematics","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Contemporary Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S021919972250016X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

We show that the bounded solutions to the fractional Helmholtz equation, $(-\Delta)^s u= u$ for $0
分数阶拉普拉斯算子及其他相关算子的Helmholtz解
我们证明了分数阶亥姆霍兹方程$(-\Delta)^s u= u$ ($\mathbb{R}^n$中$0
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
6.20%
发文量
78
审稿时长
>12 weeks
期刊介绍: With traditional boundaries between various specialized fields of mathematics becoming less and less visible, Communications in Contemporary Mathematics (CCM) presents the forefront of research in the fields of: Algebra, Analysis, Applied Mathematics, Dynamical Systems, Geometry, Mathematical Physics, Number Theory, Partial Differential Equations and Topology, among others. It provides a forum to stimulate interactions between different areas. Both original research papers and expository articles will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信