The pointwise James type constant

Pub Date : 2023-06-08 DOI:10.1007/s10476-023-0221-7
M. A. Rincón-Villamizar
{"title":"The pointwise James type constant","authors":"M. A. Rincón-Villamizar","doi":"10.1007/s10476-023-0221-7","DOIUrl":null,"url":null,"abstract":"<div><p>In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1, </p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div><p> We show that in almost transitive Banach spaces, the map <i>x</i> ∈ <i>X</i>, ∥<i>x</i>∥ = 1 ↦ <i>J</i>(<i>x, X, t</i>) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition <span>\\(J(x,X,t) = \\sqrt 2 \\)</span> for some unit vector <i>x</i> ∈ <i>X</i> implies that <i>X</i> is Hilbert.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10476-023-0221-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In 2008, Takahashi introduced the James type constants. We discuss here the pointwise James type constant: for all xX, ∥x∥ = 1,

We show that in almost transitive Banach spaces, the map xX, ∥x∥ = 1 ↦ J(x, X, t) is constant. As a consequence and having in mind the Mazur’s rotation problem, we prove that for almost transitive Banach spaces, the condition \(J(x,X,t) = \sqrt 2 \) for some unit vector xX implies that X is Hilbert.

Abstract Image

分享
查看原文
逐点James型常数
2008年,高桥引入了James类型的常量。本文讨论了点态James型常数:对于所有x∈x,∈x∈=1,我们证明了在几乎可传递Banach空间中,映射x∈x,∈↦ J(x,x,t)是常数。因此,考虑到Mazur旋转问题,我们证明了对于几乎传递Banach空间,对于某个单位向量x∈x,条件\(J(x,x,t)=\sqrt 2\)意味着x是Hilbert。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信