Maximum likelihood estimation of the Latent Class Model through model boundary decomposition

E. Allman, H. Cervantes, R. Evans, Serkan Hocsten, Kaie Kubjas, Daniela Lemke, J. Rhodes, Piotr Zwiernik
{"title":"Maximum likelihood estimation of the Latent Class Model through model boundary decomposition","authors":"E. Allman, H. Cervantes, R. Evans, Serkan Hocsten, Kaie Kubjas, Daniela Lemke, J. Rhodes, Piotr Zwiernik","doi":"10.18409/JAS.V10I1.75","DOIUrl":null,"url":null,"abstract":"The Expectation-Maximization (EM) algorithm is routinely used for the maximum likelihood estimation in the latent class analysis. However, the EM algorithm comes with no guarantees of reaching the global optimum. We study the geometry of the latent class model in order to understand the behavior of the maximum likelihood estimator. In particular, we characterize the boundary stratification of the binary latent class model with a binary hidden variable. For small models, such as for three binary observed variables, we show that this stratification allows exact computation of the maximum likelihood estimator. In this case we use simulations to study the maximum likelihood estimation attraction basins of the various strata. Our theoretical study is complemented with a careful analysis of the EM fixed point ideal which provides an alternative method of studying the boundary stratification and maximizing the likelihood function. In particular, we compute the minimal primes of this ideal in the case of a binary latent class model with a binary or ternary hidden random variable.","PeriodicalId":41066,"journal":{"name":"Journal of Algebraic Statistics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebraic Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18409/JAS.V10I1.75","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

The Expectation-Maximization (EM) algorithm is routinely used for the maximum likelihood estimation in the latent class analysis. However, the EM algorithm comes with no guarantees of reaching the global optimum. We study the geometry of the latent class model in order to understand the behavior of the maximum likelihood estimator. In particular, we characterize the boundary stratification of the binary latent class model with a binary hidden variable. For small models, such as for three binary observed variables, we show that this stratification allows exact computation of the maximum likelihood estimator. In this case we use simulations to study the maximum likelihood estimation attraction basins of the various strata. Our theoretical study is complemented with a careful analysis of the EM fixed point ideal which provides an alternative method of studying the boundary stratification and maximizing the likelihood function. In particular, we compute the minimal primes of this ideal in the case of a binary latent class model with a binary or ternary hidden random variable.
基于模型边界分解的潜在类模型的最大似然估计
期望最大化(EM)算法通常用于潜在类分析中的最大似然估计。然而,EM算法并不能保证达到全局最优。为了了解最大似然估计量的行为,我们研究了潜在类模型的几何形状。特别地,我们用一个二元隐变量来描述二元潜类模型的边界分层。对于小模型,例如对于三个二元观察变量,我们表明这种分层允许精确计算最大似然估计量。在这种情况下,我们用模拟的方法研究了各种地层吸引盆地的最大似然估计。我们的理论研究与EM不动点理想的仔细分析相辅相成,这为研究边界分层和最大化似然函数提供了另一种方法。特别地,我们计算了这种理想的最小素数的情况下,一个二进制或三元隐藏随机变量的二进制潜在类模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebraic Statistics
Journal of Algebraic Statistics STATISTICS & PROBABILITY-
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信