{"title":"Rigid isotopy of maximally writhed links","authors":"G. Mikhalkin, S. Orevkov","doi":"10.14231/AG-2021-006","DOIUrl":null,"url":null,"abstract":"This is a sequel to the paper \\cite{MO-mw} which identified maximally writhed algebraic links in $\\rp^3$ and classified them topologically. In this paper we prove that all maximally writhed links of the same topological type are rigidly isotopic, i.e. one can be deformed into another with a family of smooth real algebraic links of the same degree.","PeriodicalId":48564,"journal":{"name":"Algebraic Geometry","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2019-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebraic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.14231/AG-2021-006","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2
Abstract
This is a sequel to the paper \cite{MO-mw} which identified maximally writhed algebraic links in $\rp^3$ and classified them topologically. In this paper we prove that all maximally writhed links of the same topological type are rigidly isotopic, i.e. one can be deformed into another with a family of smooth real algebraic links of the same degree.
期刊介绍:
This journal is an open access journal owned by the Foundation Compositio Mathematica. The purpose of the journal is to publish first-class research papers in algebraic geometry and related fields. All contributions are required to meet high standards of quality and originality and are carefully screened by experts in the field.