Approximate Voronoi cells for lattices, revisited

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Thijs Laarhoven
{"title":"Approximate Voronoi cells for lattices, revisited","authors":"Thijs Laarhoven","doi":"10.1515/jmc-2020-0074","DOIUrl":null,"url":null,"abstract":"Abstract We revisit the approximate Voronoi cells approach for solving the closest vector problem with preprocessing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis–Laarhoven–De Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized iterative slicer when using less than 2 0.076 d + o ( d ) $2^{0.076d + o(d)}$ memory, and we show how to obtain time–memory trade-offs even when using less than 2 0.048 d + o ( d ) $2^{0.048d + o(d)}$ memory. We also settle the open problem of obtaining a continuous trade-off between the size of the advice and the query time complexity, as the time complexity with subexponential advice in our approach scales as d d / 2 + o ( d ) $d^{d/2 + o(d)}$ matching worst-case enumeration bounds, and achieving the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"15 1","pages":"60 - 71"},"PeriodicalIF":0.5000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2020-0074","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2020-0074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 7

Abstract

Abstract We revisit the approximate Voronoi cells approach for solving the closest vector problem with preprocessing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis–Laarhoven–De Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized iterative slicer when using less than 2 0.076 d + o ( d ) $2^{0.076d + o(d)}$ memory, and we show how to obtain time–memory trade-offs even when using less than 2 0.048 d + o ( d ) $2^{0.048d + o(d)}$ memory. We also settle the open problem of obtaining a continuous trade-off between the size of the advice and the query time complexity, as the time complexity with subexponential advice in our approach scales as d d / 2 + o ( d ) $d^{d/2 + o(d)}$ matching worst-case enumeration bounds, and achieving the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.
晶格的近似Voronoi单元,重新讨论
摘要我们重新审视了在高维格上用预处理(CVPP)求解最接近向量问题的近似Voronoi单元方法,并解决了Doulgerakis–Laarhoven–De Weger[PQCrypto,2019]在高斯启发式下确定这些Voronois单元体积上的精确渐近性的开放问题。因此,当使用小于2 0.076 d+o(d)$2^{0.076d+o(d)}$内存时,我们获得了随机迭代切片器时间复杂度的改进上界,并且我们展示了即使使用小于2 0.048 d+o(d)$2^{0.048d+o(d)}$内存,如何获得时间-内存的权衡。我们还解决了在建议的大小和查询时间复杂度之间获得连续权衡的开放问题,因为在我们的方法中,具有子指数建议的时间复杂度缩放为与最坏情况枚举边界匹配的d/2+o(d)$d^{d/2+o。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信