Further generalized refinement of Young’s inequalities for τ -mesurable operators

Q3 Mathematics
M. Ighachane, M. Akkouchi
{"title":"Further generalized refinement of Young’s inequalities for τ -mesurable operators","authors":"M. Ighachane, M. Akkouchi","doi":"10.2478/mjpaa-2021-0015","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1. Then for all positive integer m (1) - For v ∈ v∈[ 0,12n ] v \\in \\left[ {0,{1 \\over {{2^n}}}} \\right] , we have (avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m. {\\left( {{a^v}{b^{1 - v}}} \\right)^m} + \\sum\\limits_{k = 1}^n {{2^{k - 1}}{v^m}{{\\left( {\\sqrt {{b^m}} - \\root {{2^k}} \\of {\\left( {a{b^{2k - 1}} - 1} \\right)m} } \\right)}^2} \\le {{\\left( {va + \\left( {1 - v} \\right)b} \\right)}^m}.} (2) - For v ∈ v∈[ 2n-12n,1 ] v \\in \\left[ {{{{2^n} - 1} \\over {{2^n}}},1} \\right] , we have (avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m, {\\left( {{a^v}{b^{1 - v}}} \\right)^m} + \\sum\\limits_{k = 1}^n {{2^{k - 1}}{{\\left( {1 - v} \\right)}^m}{{\\left( {\\sqrt {{a^m}} - \\root {{2^k}} \\of {\\left( {b{a^{2k - 1}} - 1} \\right)m} } \\right)}^2} \\le {{\\left( {va + \\left( {1 - v} \\right)b} \\right)}^m},} we also prove two similar inequalities for the cases v ∈ v∈[ 2n-12n,12 ] v \\in \\left[ {{{{2^n} - 1} \\over {{2^n}}},{1 \\over 2}} \\right] and v ∈ v∈[ 12,2n+12n ] v \\in \\left[ {{1 \\over 2},{{{2^n} + 1} \\over {{2^n}}}} \\right] . These inequalities provides a generalization of an important refinements of the Young inequality obtained in 2017 by S. Furuichi. As applications we shall give some refined Young type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"214 - 226"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this paper, we prove that if a, b > 0 and 0 ≤ v ≤ 1. Then for all positive integer m (1) - For v ∈ v∈[ 0,12n ] v \in \left[ {0,{1 \over {{2^n}}}} \right] , we have (avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m. {\left( {{a^v}{b^{1 - v}}} \right)^m} + \sum\limits_{k = 1}^n {{2^{k - 1}}{v^m}{{\left( {\sqrt {{b^m}} - \root {{2^k}} \of {\left( {a{b^{2k - 1}} - 1} \right)m} } \right)}^2} \le {{\left( {va + \left( {1 - v} \right)b} \right)}^m}.} (2) - For v ∈ v∈[ 2n-12n,1 ] v \in \left[ {{{{2^n} - 1} \over {{2^n}}},1} \right] , we have (avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m, {\left( {{a^v}{b^{1 - v}}} \right)^m} + \sum\limits_{k = 1}^n {{2^{k - 1}}{{\left( {1 - v} \right)}^m}{{\left( {\sqrt {{a^m}} - \root {{2^k}} \of {\left( {b{a^{2k - 1}} - 1} \right)m} } \right)}^2} \le {{\left( {va + \left( {1 - v} \right)b} \right)}^m},} we also prove two similar inequalities for the cases v ∈ v∈[ 2n-12n,12 ] v \in \left[ {{{{2^n} - 1} \over {{2^n}}},{1 \over 2}} \right] and v ∈ v∈[ 12,2n+12n ] v \in \left[ {{1 \over 2},{{{2^n} + 1} \over {{2^n}}}} \right] . These inequalities provides a generalization of an important refinements of the Young inequality obtained in 2017 by S. Furuichi. As applications we shall give some refined Young type inequalities for the traces, determinants, and p-norms of positive τ-measurable operators.
τ-可测算子的Young不等式的进一步广义精化
摘要本文证明了如果a,b>0且0≤v≤1。则对于所有正整数m(1)-对于v∈v∈[0,12n]v\in\left[{0,{1\over{2^n}}}\right],我们有(avb1-v)m+∑k=1n2k-1vm(bm-(ab2k-1-1)m2k)2≤(va+(1-v)b)m。左({a ^ v}{b ^{1-v}})^m}+\sum\limits_{k=1}^n{2 ^{k-1}}{v ^ m}(2) -对于v∈v∈[2n-12n,1]v\in\left[{{{2^n}-1}\over{2^n}},1}\right],我们有(avb1-v)m+∑k=1n2k-1(1-v)m(am-(ba2k-1-1)m2k)2≤(va+(1-v)b)m,左{\right)}^m},}我们还证明了v∈v∈[2n-12n,12]v\in\left[{{{2}-1}\over{2}}}},{1}\right]和v∈v∈[12,2n+12n]v\in \left{1}\ over{2’n},{{2}+1}\over。这些不等式概括了S.Furuichi在2017年获得的Young不等式的一个重要改进。作为应用,我们将给出一些关于正τ-可测算子的迹、行列式和p-范数的精细Young型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信