On m-th roots of complex matrices

IF 0.7 4区 数学 Q2 Mathematics
H. Liu, Jing Zhao
{"title":"On m-th roots of complex matrices","authors":"H. Liu, Jing Zhao","doi":"10.13001/ela.2022.7047","DOIUrl":null,"url":null,"abstract":"For an $n\\times n$ matrix $M$, $\\sigma(M)$ denotes the set of all different eigenvalues of $M$. In this paper, we will prove two results on the $m$-th $(m\\geq2)$ roots of a matrix $A$. Firstly, let $X$ be an $m$-th root of $A$. Then $X$ can be expressed as a polynomial in $A$ if and only if rank $X^2$= rank $X$ and $|\\sigma(X)|=|\\sigma(A)|$. Secondly, let $X$ and $Y$ be two $m$-th roots of $A$. If both $X$ and $Y$ can be expressed as polynomials in $A$, then $X=Y$ if and only if $\\sigma(X)=\\sigma(Y)$.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.7047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

For an $n\times n$ matrix $M$, $\sigma(M)$ denotes the set of all different eigenvalues of $M$. In this paper, we will prove two results on the $m$-th $(m\geq2)$ roots of a matrix $A$. Firstly, let $X$ be an $m$-th root of $A$. Then $X$ can be expressed as a polynomial in $A$ if and only if rank $X^2$= rank $X$ and $|\sigma(X)|=|\sigma(A)|$. Secondly, let $X$ and $Y$ be two $m$-th roots of $A$. If both $X$ and $Y$ can be expressed as polynomials in $A$, then $X=Y$ if and only if $\sigma(X)=\sigma(Y)$.
在复矩阵的m次根上
对于$n\times n$矩阵$M$, $\sigma(M)$表示$M$的所有不同特征值的集合。在本文中,我们将证明关于一个矩阵$A$的$m$ - $(m\geq2)$根的两个结果。首先,假设$X$是$A$的根$m$。当且仅当rank $X^2$ = rank $X$和$|\sigma(X)|=|\sigma(A)|$时,$X$可以表示为$A$中的多项式。其次,设$X$和$Y$是$A$的两个$m$ -根。如果$X$和$Y$都可以表示为$A$中的多项式,则$X=Y$当且仅当$\sigma(X)=\sigma(Y)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信