Deteksi Arteri Karotis pada Citra Ultrasound B-Mode Berbasis Convolution Neural Network Single Shot Multibox Detector

I. M. G. Sunarya, Tita Karlita, Joko Priambodo, Rika Rokhana, E. M. Yuniarno, T. A. Sardjono, I. Sunu, I. Purnama
{"title":"Deteksi Arteri Karotis pada Citra Ultrasound B-Mode Berbasis Convolution Neural Network Single Shot Multibox Detector","authors":"I. M. G. Sunarya, Tita Karlita, Joko Priambodo, Rika Rokhana, E. M. Yuniarno, T. A. Sardjono, I. Sunu, I. Purnama","doi":"10.14710/JTSISKOM.7.2.2019.56-63","DOIUrl":null,"url":null,"abstract":"Detection of vascular areas (blood vessels) using B-Mode ultrasound images is needed for automatic applications such as registration and navigation in medical operations. This study developed the detection of the carotid artery area using Convolution Neural Network Single Shot Network Multibox Detector (SSD) to determine the bounding box ROI of the carotid artery area in B-mode ultrasound images. The data used are B-Mode ultrasound images on the neck that contain the carotid artery area (primary data). SSD method result is 95% of accuracy which is higher than the Hough transformation method, Ellipse method, and Faster RCNN in detecting carotid artery area in the B-Mode ultrasound image. The use of image enhancement with Gaussian filter, histogram equalization, and Median filters in this method can increase detection accuracy. The best process time of the proposed method is 2.09 seconds so that it can be applied in a real-time system.","PeriodicalId":56231,"journal":{"name":"Jurnal Teknologi dan Sistem Komputer","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi dan Sistem Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14710/JTSISKOM.7.2.2019.56-63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Detection of vascular areas (blood vessels) using B-Mode ultrasound images is needed for automatic applications such as registration and navigation in medical operations. This study developed the detection of the carotid artery area using Convolution Neural Network Single Shot Network Multibox Detector (SSD) to determine the bounding box ROI of the carotid artery area in B-mode ultrasound images. The data used are B-Mode ultrasound images on the neck that contain the carotid artery area (primary data). SSD method result is 95% of accuracy which is higher than the Hough transformation method, Ellipse method, and Faster RCNN in detecting carotid artery area in the B-Mode ultrasound image. The use of image enhancement with Gaussian filter, histogram equalization, and Median filters in this method can increase detection accuracy. The best process time of the proposed method is 2.09 seconds so that it can be applied in a real-time system.
柠檬动脉卡氏菌超声B型小檗病卷积神经网络单点多盒检测器
利用b超图像检测血管区域(血管)是医疗操作中自动应用的需要,如配准和导航。本研究采用卷积神经网络单次网络多盒检测器(SSD)对颈动脉区域进行检测,确定b超图像中颈动脉区域的边界盒ROI。使用的数据是包含颈动脉区域的颈部b超图像(主要数据)。SSD方法在b超图像中检测颈动脉区域的准确率为95%,高于Hough变换法、Ellipse法和Faster RCNN。该方法采用高斯滤波、直方图均衡化和中值滤波对图像进行增强,提高了检测精度。该方法的最佳处理时间为2.09秒,可应用于实时系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
6
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信