Numerical investigation of rheological behaviors of polystyrene melts in different contraction dies based on the Rolie-Poly model

IF 2.3 3区 工程技术 Q2 MECHANICS
Qingsheng Liu, Guixian Liu, Youqiong Liu, Chuntao Jiang
{"title":"Numerical investigation of rheological behaviors of polystyrene melts in different contraction dies based on the Rolie-Poly model","authors":"Qingsheng Liu,&nbsp;Guixian Liu,&nbsp;Youqiong Liu,&nbsp;Chuntao Jiang","doi":"10.1007/s00397-023-01410-2","DOIUrl":null,"url":null,"abstract":"<div><p>Extrusion molding is an important method in the polymer processing industry. The stress concentration of polymer melts can easily occur at the contraction channel, especially at the contraction exit during extrusion molding, which causes volume defects in the final parts. To eliminate or minimize volume defects, this study examined the effects of contraction profiles and contraction lengths on the rheological behaviors of polystyrene melts based on numerical methods and algorithms in the current study. The contraction profiles included abrupt contraction, V-shaped contraction, hyperbolic contraction, and elliptic contraction geometries at different contraction lengths. A single-mode Rolie-Poly model was employed to describe the stress–strain relationship of polystyrene melt. Additionally, the finite volume method and SIMPLE algorithm were used to discretize and solve the governing equations of the fluid in a 4:1 contraction flow. Numerical simulations of the principal stress difference (PSD), stretch ratio, and velocity of polystyrene melt in the aforementioned contraction geometries were implemented. The numerical results indicate that contraction profiles and contraction length are two major factors affecting the rheological behaviors of polystyrene melts in contraction flows based on the same contraction ratio and flow rate. V-shaped contraction, hyperbolic contraction, and elliptic contraction geometries can reduce stress concentration compared to abrupt contraction. Thus, during extrusion molding, it is better to use the elliptic contraction profile with adequate contraction length to eliminate or minimize defects in parts caused by stress concentration at the sharp edge exit.</p><h3>Graphical abstract</h3>\n <figure><div><div><div><picture><source><img></source></picture></div></div></div></figure>\n </div>","PeriodicalId":755,"journal":{"name":"Rheologica Acta","volume":"62 9","pages":"417 - 432"},"PeriodicalIF":2.3000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rheologica Acta","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00397-023-01410-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Extrusion molding is an important method in the polymer processing industry. The stress concentration of polymer melts can easily occur at the contraction channel, especially at the contraction exit during extrusion molding, which causes volume defects in the final parts. To eliminate or minimize volume defects, this study examined the effects of contraction profiles and contraction lengths on the rheological behaviors of polystyrene melts based on numerical methods and algorithms in the current study. The contraction profiles included abrupt contraction, V-shaped contraction, hyperbolic contraction, and elliptic contraction geometries at different contraction lengths. A single-mode Rolie-Poly model was employed to describe the stress–strain relationship of polystyrene melt. Additionally, the finite volume method and SIMPLE algorithm were used to discretize and solve the governing equations of the fluid in a 4:1 contraction flow. Numerical simulations of the principal stress difference (PSD), stretch ratio, and velocity of polystyrene melt in the aforementioned contraction geometries were implemented. The numerical results indicate that contraction profiles and contraction length are two major factors affecting the rheological behaviors of polystyrene melts in contraction flows based on the same contraction ratio and flow rate. V-shaped contraction, hyperbolic contraction, and elliptic contraction geometries can reduce stress concentration compared to abrupt contraction. Thus, during extrusion molding, it is better to use the elliptic contraction profile with adequate contraction length to eliminate or minimize defects in parts caused by stress concentration at the sharp edge exit.

Graphical abstract

Abstract Image

基于Rolie-Poly模型的聚苯乙烯熔体在不同收缩模内流变行为的数值研究
挤出成型是聚合物加工工业中的一种重要方法。在挤压成型过程中,聚合物熔体的应力集中容易发生在收缩通道处,特别是收缩出口处,从而造成最终零件的体积缺陷。为了消除或最小化体积缺陷,本研究基于当前研究的数值方法和算法,研究了收缩轮廓和收缩长度对聚苯乙烯熔体流变行为的影响。不同收缩长度下的收缩形态包括突发性收缩、v型收缩、双曲型收缩和椭圆型收缩。采用单模Rolie-Poly模型来描述聚苯乙烯熔体的应力-应变关系。此外,采用有限体积法和SIMPLE算法对4:1收缩流的流体控制方程进行离散求解。对上述收缩几何形状下聚苯乙烯熔体的主应力差(PSD)、拉伸比和速度进行了数值模拟。结果表明,在相同收缩比和流量下,收缩线和收缩长度是影响聚苯乙烯熔体在收缩流动中的流变行为的两个主要因素。与突然收缩相比,v形收缩、双曲收缩和椭圆收缩几何形状可以减少应力集中。因此,在挤压成型时,最好采用具有足够收缩长度的椭圆型收缩型材,以消除或尽量减少因锐边出口处应力集中而造成的零件缺陷。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Rheologica Acta
Rheologica Acta 物理-力学
CiteScore
4.60
自引率
8.70%
发文量
55
审稿时长
3 months
期刊介绍: "Rheologica Acta is the official journal of The European Society of Rheology. The aim of the journal is to advance the science of rheology, by publishing high quality peer reviewed articles, invited reviews and peer reviewed short communications. The Scope of Rheologica Acta includes: - Advances in rheometrical and rheo-physical techniques, rheo-optics, microrheology - Rheology of soft matter systems, including polymer melts and solutions, colloidal dispersions, cement, ceramics, glasses, gels, emulsions, surfactant systems, liquid crystals, biomaterials and food. - Rheology of Solids, chemo-rheology - Electro and magnetorheology - Theory of rheology - Non-Newtonian fluid mechanics, complex fluids in microfluidic devices and flow instabilities - Interfacial rheology Rheologica Acta aims to publish papers which represent a substantial advance in the field, mere data reports or incremental work will not be considered. Priority will be given to papers that are methodological in nature and are beneficial to a wide range of material classes. It should also be noted that the list of topics given above is meant to be representative, not exhaustive. The editors welcome feedback on the journal and suggestions for reviews and comments."
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信