{"title":"Density Operator Formulation for a Supersymmetric Harmonic Oscillator: Vector Coherent State Construction and Statistical Properties","authors":"Isiaka Aremua , Mahouton Norbert Hounkonnou , Komi Sodoga , Paalamwé Komi Tchakpélé","doi":"10.1016/S0034-4877(22)00084-2","DOIUrl":null,"url":null,"abstract":"<div><p>Motivated by our recent work published in <span>[23]</span><span><span>, we achieve, in this paper, a matrix formulation of the density operator to construct a two-component vector coherent state representation for a supersymmetric harmonic oscillator. We investigate and discuss the main relevant statistical properties. We use the completeness relation to perform the </span>thermodynamic analysis in the diagonal P-representation of the density operator.</span></p></div>","PeriodicalId":49630,"journal":{"name":"Reports on Mathematical Physics","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reports on Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034487722000842","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 1
Abstract
Motivated by our recent work published in [23], we achieve, in this paper, a matrix formulation of the density operator to construct a two-component vector coherent state representation for a supersymmetric harmonic oscillator. We investigate and discuss the main relevant statistical properties. We use the completeness relation to perform the thermodynamic analysis in the diagonal P-representation of the density operator.
期刊介绍:
Reports on Mathematical Physics publish papers in theoretical physics which present a rigorous mathematical approach to problems of quantum and classical mechanics and field theories, relativity and gravitation, statistical physics, thermodynamics, mathematical foundations of physical theories, etc. Preferred are papers using modern methods of functional analysis, probability theory, differential geometry, algebra and mathematical logic. Papers without direct connection with physics will not be accepted. Manuscripts should be concise, but possibly complete in presentation and discussion, to be comprehensible not only for mathematicians, but also for mathematically oriented theoretical physicists. All papers should describe original work and be written in English.