On the composition operators on Besov and Triebel–Lizorkin spaces with power weights

IF 0.7 4区 数学 Q2 MATHEMATICS
D. Drihem
{"title":"On the composition operators on Besov and Triebel–Lizorkin spaces with power weights","authors":"D. Drihem","doi":"10.4064/ap220314-23-9","DOIUrl":null,"url":null,"abstract":". Let G : R → R be a continuous function. Under some assumptions on G , s, α, p and q we prove that { : f ∈ p,q implies G is a linear function. Here A sp,q ( R n , | · | α ) stands for either the Besov space B s p,q ( R n , | · | α ) or the Triebel-Lizorkin space F s p,q ( R n , | · | α ). These spaces unify and generalize many classical function spaces such as Sobolev spaces of power weights. One of the main difficulties to study this problem is that the norm of the A s p,q ( R n , |·| α ) spaces with α 6 = 0 is not translation invariant, so some new techniques must be developed.","PeriodicalId":55513,"journal":{"name":"Annales Polonici Mathematici","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Polonici Mathematici","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/ap220314-23-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

. Let G : R → R be a continuous function. Under some assumptions on G , s, α, p and q we prove that { : f ∈ p,q implies G is a linear function. Here A sp,q ( R n , | · | α ) stands for either the Besov space B s p,q ( R n , | · | α ) or the Triebel-Lizorkin space F s p,q ( R n , | · | α ). These spaces unify and generalize many classical function spaces such as Sobolev spaces of power weights. One of the main difficulties to study this problem is that the norm of the A s p,q ( R n , |·| α ) spaces with α 6 = 0 is not translation invariant, so some new techniques must be developed.
Besov和triiebel - lizorkin空间上幂权的复合算子
. 设G: R→R为连续函数。在G, s, α, p和q的某些假设下,证明{:f∈p,q暗示G是一个线性函数。这里A sp,q (rn, |·| α)代表Besov空间B sp,q (rn, |·| α)或triiebel - lizorkin空间F sp,q (rn, |·| α)。这些空间统一和推广了许多经典函数空间,如幂权的Sobolev空间。研究这一问题的主要困难之一是α 6 = 0的A sp,q (rn, |·| α)空间的范数不是平移不变量,因此必须开发一些新的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
20.00%
发文量
19
审稿时长
6 months
期刊介绍: Annales Polonici Mathematici is a continuation of Annales de la Société Polonaise de Mathématique (vols. I–XXV) founded in 1921 by Stanisław Zaremba. The journal publishes papers in Mathematical Analysis and Geometry. Each volume appears in three issues.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信