{"title":"Interactions between Hlawka Type-1 and Type-2 quantities","authors":"Xin Luo","doi":"10.7153/mia-2021-24-63","DOIUrl":null,"url":null,"abstract":"The classical Hlawka inequality possesses deep connections with zonotopes and zonoids in convex geometry, and has been related to Minkowski space. We introduce Hlawka Type-1 and Type-2 quantities, and establish a Hlawka-type relation between them, which connects a vast number of strikingly different variants of the Hlawka inequalities, such as Serre’s reverse Hlawka inequality in the future cone of the Minkowski space, the Hlawka inequality for subadditive function on abelian group by Ressel, and the integral analogs by Takahasi et al. Besides, we announce several en-hanced results, such as the Hlawka inequality for the power of measure function. Particularly, we give a complete study of the Hlawka inequality for quadratic form which relates to a work of Serre.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2021-24-63","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
The classical Hlawka inequality possesses deep connections with zonotopes and zonoids in convex geometry, and has been related to Minkowski space. We introduce Hlawka Type-1 and Type-2 quantities, and establish a Hlawka-type relation between them, which connects a vast number of strikingly different variants of the Hlawka inequalities, such as Serre’s reverse Hlawka inequality in the future cone of the Minkowski space, the Hlawka inequality for subadditive function on abelian group by Ressel, and the integral analogs by Takahasi et al. Besides, we announce several en-hanced results, such as the Hlawka inequality for the power of measure function. Particularly, we give a complete study of the Hlawka inequality for quadratic form which relates to a work of Serre.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.