Robust approach for blind separation of noisy mixtures of independent and dependent sources

Q3 Mathematics
A. Ghazdali, M. Hakim, A. Laghrib, N. Mamouni, A. Metrane, A. Ourdou
{"title":"Robust approach for blind separation of noisy mixtures of independent and dependent sources","authors":"A. Ghazdali, M. Hakim, A. Laghrib, N. Mamouni, A. Metrane, A. Ourdou","doi":"10.23939/mmc2021.04.761","DOIUrl":null,"url":null,"abstract":"In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.","PeriodicalId":37156,"journal":{"name":"Mathematical Modeling and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modeling and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23939/mmc2021.04.761","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, a new Blind Source Separation (BSS) method that handles mixtures of noisy independent/dependent sources is introduced. We achieve that by minimizing a criterion that fuses a separating part, based on Kullback–Leibler divergence for either dependent or independent sources, with a regularization part that employs the bilateral total variation (BTV) for the purpose of denoising the observations. The proposed algorithm utilizes a primal-dual algorithm to remove the noise, while a gradient descent method is implemented to retrieve the signal sources. Our algorithm has shown its effectiveness and efficiency and also surpassed the standard existing BSS algorithms.
独立源和相依源混合噪声的鲁棒盲分离方法
本文介绍了一种新的盲源分离(BSS)方法,该方法处理噪声独立/相关源的混合。我们通过最小化一个标准来实现这一点,该标准将基于依赖或独立源的Kullback–Leibler散度的分离部分与采用双边总变异(BTV)来对观测值进行去噪的正则化部分融合在一起。该算法利用原对偶算法去除噪声,同时采用梯度下降法提取信号源。我们的算法已经证明了它的有效性和效率,也超过了现有的标准BSS算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Modeling and Computing
Mathematical Modeling and Computing Computer Science-Computational Theory and Mathematics
CiteScore
1.60
自引率
0.00%
发文量
54
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信