Nueva variante del algoritmo NLMS/F de bajo costo computacional

Laura Jazmín Hidalgo Hernández, Ángel Alfonso Vázquez Piña, Xochitl Maya Rosales, Juan Gerardo Avalos Ochoa, Giovanny Sánchez Rivera
{"title":"Nueva variante del algoritmo NLMS/F de bajo costo computacional","authors":"Laura Jazmín Hidalgo Hernández, Ángel Alfonso Vázquez Piña, Xochitl Maya Rosales, Juan Gerardo Avalos Ochoa, Giovanny Sánchez Rivera","doi":"10.37537/rev.elektron.6.2.163.2022","DOIUrl":null,"url":null,"abstract":"El filtrado adaptativo es utilizado ampliamente en aplicaciones de procesamiento de señales, entre las que se encuentran: cancelación de eco acústico, identificación de sistemas, ecualización de canales, entre otras. El elemento más importante de un filtro adaptativo es el algoritmo adaptativo, el cual tiene la función de ajustar los coeficientes del filtro para minimizar la señal de error. Por tal motivo, es necesario un algoritmo adaptativo que presente una baja carga computacional y una alta velocidad de convergencia. En este artículo, se presenta una nueva variante del algoritmo de mínimos promediados de cuarto orden normalizado (NLMF - Normalized Least-Mean-Fourth) basado en el conjunto de membresías, además, se propone un método que permite ajustar el factor de convergencia de forma automática. Para evaluar su funcionamiento, el algoritmo se simuló en un identificador de sistemas y un cancelador de eco acústico. Los resultados obtenidos demuestran que el algoritmo propuesto mejora la velocidad de convergencia, además de exhibir un bajo costo computacional en comparación con el algoritmo NLMS/F convencional.","PeriodicalId":34872,"journal":{"name":"Elektron","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elektron","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37537/rev.elektron.6.2.163.2022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

El filtrado adaptativo es utilizado ampliamente en aplicaciones de procesamiento de señales, entre las que se encuentran: cancelación de eco acústico, identificación de sistemas, ecualización de canales, entre otras. El elemento más importante de un filtro adaptativo es el algoritmo adaptativo, el cual tiene la función de ajustar los coeficientes del filtro para minimizar la señal de error. Por tal motivo, es necesario un algoritmo adaptativo que presente una baja carga computacional y una alta velocidad de convergencia. En este artículo, se presenta una nueva variante del algoritmo de mínimos promediados de cuarto orden normalizado (NLMF - Normalized Least-Mean-Fourth) basado en el conjunto de membresías, además, se propone un método que permite ajustar el factor de convergencia de forma automática. Para evaluar su funcionamiento, el algoritmo se simuló en un identificador de sistemas y un cancelador de eco acústico. Los resultados obtenidos demuestran que el algoritmo propuesto mejora la velocidad de convergencia, además de exhibir un bajo costo computacional en comparación con el algoritmo NLMS/F convencional.
低计算成本NLMS/F算法的新变体
自适应滤波广泛应用于信号处理应用,包括:声回波消除、系统识别、信道均衡等。自适应滤波器最重要的元素是自适应算法,它具有调整滤波器系数以最小化误差信号的功能。因此,需要一种计算负载低、收敛速度快的自适应算法。本文提出了一种基于成员集的归一化四阶最小平均(NLMF)算法的新变体,并提出了一种自动调整收敛因子的方法。为了评估其性能,该算法在系统标识符和回声消除器上进行了模拟。结果表明,与传统的NLMS/F算法相比,该算法提高了收敛速度,计算成本较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
2
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信