Introduction of new Picard–S hybrid iteration with application and some results for nonexpansive mappings

Q2 Mathematics
J. Srivastava
{"title":"Introduction of new Picard–S hybrid iteration with application and some results for nonexpansive mappings","authors":"J. Srivastava","doi":"10.1108/AJMS-08-2020-0044","DOIUrl":null,"url":null,"abstract":"PurposeIn this paper, Picard–S hybrid iterative process is defined, which is a hybrid of Picard and S-iterative process. This new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid and Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.Design/methodology/approachThis new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings.FindingsShowed the fastest convergence of this new iteration and then other iteration defined in this paper. The author finds the solution of delay differential equation using this hybrid iteration. For new iteration, the author also proved a theorem for nonexpansive mapping.Originality/valueThis new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.","PeriodicalId":36840,"journal":{"name":"Arab Journal of Mathematical Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arab Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/AJMS-08-2020-0044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

Abstract

PurposeIn this paper, Picard–S hybrid iterative process is defined, which is a hybrid of Picard and S-iterative process. This new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid and Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.Design/methodology/approachThis new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings.FindingsShowed the fastest convergence of this new iteration and then other iteration defined in this paper. The author finds the solution of delay differential equation using this hybrid iteration. For new iteration, the author also proved a theorem for nonexpansive mapping.Originality/valueThis new iteration converges faster than all of Picard, Krasnoselskii, Mann, Ishikawa, S-iteration, Picard–Mann hybrid, Picard–Krasnoselskii hybrid, Picard–Ishikawa hybrid iterative processes for contraction mappings and to find the solution of delay differential equation, using this hybrid iteration also proved some results for Picard–S hybrid iterative process for nonexpansive mappings.
介绍了一种新的Picard-S混合迭代方法及其在非扩张映射中的应用,并给出了一些结果
本文定义了Picard - s混合迭代过程,它是Picard和s -迭代过程的混合。该迭代收敛速度快于收缩映射的Picard、Krasnoselskii、Mann、Ishikawa、s -迭代、Picard - Mann混合、Picard - Krasnoselskii混合和Picard - Ishikawa混合迭代过程的收敛速度,并用于求解时滞微分方程,利用该混合迭代还证明了非扩张映射的Picard - s混合迭代过程的一些结果。这种新的迭代收敛速度比所有的Picard, Krasnoselskii, Mann, Ishikawa, s -迭代,Picard - Mann混合,Picard - Krasnoselskii混合,Picard - Ishikawa混合收缩映射迭代过程更快。结果表明,这种新迭代的收敛速度最快,其次是本文定义的其他迭代。利用这种混合迭代方法求解了时滞微分方程。对于新迭代,作者还证明了非扩张映射的一个定理。独创性/价值:这种新的迭代收敛速度比所有的Picard、Krasnoselskii、Mann、Ishikawa、s -迭代、Picard - Mann混合、Picard - Krasnoselskii混合、Picard - Ishikawa混合迭代的收缩映射和求解延迟微分方程的收敛速度都要快,利用这种混合迭代还证明了非扩张映射的Picard - s混合迭代过程的一些结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Arab Journal of Mathematical Sciences
Arab Journal of Mathematical Sciences Mathematics-Mathematics (all)
CiteScore
1.20
自引率
0.00%
发文量
17
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信