Key feature analysis: a simple, yet powerful method for comparing text varieties

IF 0.8 Q3 LINGUISTICS
Corpora Pub Date : 2023-04-01 DOI:10.3366/cor.2023.0275
Jesse Egbert, D. Biber
{"title":"Key feature analysis: a simple, yet powerful method for comparing text varieties","authors":"Jesse Egbert, D. Biber","doi":"10.3366/cor.2023.0275","DOIUrl":null,"url":null,"abstract":"To date, corpus-based methods for comparing language varieties have fallen into one of two camps: ( 1) md analysis – a complicated multi-variate approach based on analysis of functionally motivated linguistic features in each text of a corpus, or ( 2) keyword/key pos analysis – simple, univariate techniques to identify any feature with a statistically skewed distribution in a corpus. In this paper, we introduce a complementary technique – key feature analysis – which is a simple quantitative approach to compare the texts in two varieties with respect to a set of functionally motivated lexico-grammatical features. We introduce the methods of key feature analysis, contrast them with other approaches for comparing text varieties, and present case studies from the domains of online registers and US presidential debates.","PeriodicalId":44933,"journal":{"name":"Corpora","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Corpora","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3366/cor.2023.0275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"LINGUISTICS","Score":null,"Total":0}
引用次数: 0

Abstract

To date, corpus-based methods for comparing language varieties have fallen into one of two camps: ( 1) md analysis – a complicated multi-variate approach based on analysis of functionally motivated linguistic features in each text of a corpus, or ( 2) keyword/key pos analysis – simple, univariate techniques to identify any feature with a statistically skewed distribution in a corpus. In this paper, we introduce a complementary technique – key feature analysis – which is a simple quantitative approach to compare the texts in two varieties with respect to a set of functionally motivated lexico-grammatical features. We introduce the methods of key feature analysis, contrast them with other approaches for comparing text varieties, and present case studies from the domains of online registers and US presidential debates.
关键特征分析:一种简单而强大的文本变体比较方法
到目前为止,基于语料库的语言变体比较方法分为两个阵营:(1)md分析 – 一种复杂的多变量方法,基于对语料库中每个文本中受功能驱动的语言特征的分析,或(2)关键词/关键位置分析 – 简单的单变量技术来识别语料库中具有统计偏斜分布的任何特征。在本文中,我们介绍了一种互补技术 – 关键特征分析 – 这是一种简单的定量方法,可以根据一组功能驱动的词典语法特征来比较两个变体的文本。我们介绍了关键特征分析的方法,将其与其他比较文本变体的方法进行了比较,并从在线登记和美国总统辩论领域进行了案例研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Corpora
Corpora LINGUISTICS-
CiteScore
1.70
自引率
0.00%
发文量
20
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信