{"title":"A Robust Unscented Kalman Filter applied to Ultra-wideband Positioning","authors":"Chuanyang Wang, Yipeng Ning, Xin Li, Haobo Li","doi":"10.1080/19479832.2020.1813816","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ultra-wideband (UWB) is well suited for indoor positioning due to its high resolution and good penetration through objects. As one of nonlinear filter algorithms, unscented Kalman filter (UKF) is widely used to estimate the position. However, UKF cannot resist the effect of outliers. The performance of the filter algorithm will be inevitably influenced. In this study, a robust UKF (RUKF) method accompanied by hypothesis test and robust estimation is proposed. Furthermore, the simulation and measurement experiments are performed to verify the effectiveness and feasibility of the proposed RUKF. Simulation experiment results are given to demonstrate that the RUKF can effectively control the influences of the outliers being treated as systematic errors and large variance random errors. When the outliers come from the thick-tailed distribution, the robust estimation does not play a role, and the RUKF does not work well. The measured experiment results show that the outliers will be generated in the non-line-of-sight environment whose impact is abnormally serious. The robust estimation can provide relatively reliable optimised residuals and control the influences of the outliers caused by gross errors. We can believe that the proposed RUKF is effective to resist the effects of outliers and improves the positioning accuracy.","PeriodicalId":46012,"journal":{"name":"International Journal of Image and Data Fusion","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2020-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19479832.2020.1813816","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Image and Data Fusion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19479832.2020.1813816","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Ultra-wideband (UWB) is well suited for indoor positioning due to its high resolution and good penetration through objects. As one of nonlinear filter algorithms, unscented Kalman filter (UKF) is widely used to estimate the position. However, UKF cannot resist the effect of outliers. The performance of the filter algorithm will be inevitably influenced. In this study, a robust UKF (RUKF) method accompanied by hypothesis test and robust estimation is proposed. Furthermore, the simulation and measurement experiments are performed to verify the effectiveness and feasibility of the proposed RUKF. Simulation experiment results are given to demonstrate that the RUKF can effectively control the influences of the outliers being treated as systematic errors and large variance random errors. When the outliers come from the thick-tailed distribution, the robust estimation does not play a role, and the RUKF does not work well. The measured experiment results show that the outliers will be generated in the non-line-of-sight environment whose impact is abnormally serious. The robust estimation can provide relatively reliable optimised residuals and control the influences of the outliers caused by gross errors. We can believe that the proposed RUKF is effective to resist the effects of outliers and improves the positioning accuracy.
期刊介绍:
International Journal of Image and Data Fusion provides a single source of information for all aspects of image and data fusion methodologies, developments, techniques and applications. Image and data fusion techniques are important for combining the many sources of satellite, airborne and ground based imaging systems, and integrating these with other related data sets for enhanced information extraction and decision making. Image and data fusion aims at the integration of multi-sensor, multi-temporal, multi-resolution and multi-platform image data, together with geospatial data, GIS, in-situ, and other statistical data sets for improved information extraction, as well as to increase the reliability of the information. This leads to more accurate information that provides for robust operational performance, i.e. increased confidence, reduced ambiguity and improved classification enabling evidence based management. The journal welcomes original research papers, review papers, shorter letters, technical articles, book reviews and conference reports in all areas of image and data fusion including, but not limited to, the following aspects and topics: • Automatic registration/geometric aspects of fusing images with different spatial, spectral, temporal resolutions; phase information; or acquired in different modes • Pixel, feature and decision level fusion algorithms and methodologies • Data Assimilation: fusing data with models • Multi-source classification and information extraction • Integration of satellite, airborne and terrestrial sensor systems • Fusing temporal data sets for change detection studies (e.g. for Land Cover/Land Use Change studies) • Image and data mining from multi-platform, multi-source, multi-scale, multi-temporal data sets (e.g. geometric information, topological information, statistical information, etc.).