Víctor Martínez-Sánchez, Iván Villalón-Turrubiates, Francisco Cervantes-Álvarez, C. Hernández-Mejía
{"title":"Exploring a Novel Mexican Sign Language Lexicon Video Dataset","authors":"Víctor Martínez-Sánchez, Iván Villalón-Turrubiates, Francisco Cervantes-Álvarez, C. Hernández-Mejía","doi":"10.3390/mti7080083","DOIUrl":null,"url":null,"abstract":"This research explores a novel Mexican Sign Language (MSL) lexicon video dataset containing the dynamic gestures most frequently used in MSL. Each gesture consists of a set of different versions of videos under uncontrolled conditions. The MX-ITESO-100 dataset is composed of a lexicon of 100 gestures and 5000 videos from three participants with different grammatical elements. Additionally, the dataset is evaluated in a two-step neural network model as having an accuracy greater than 99% and thus serves as a benchmark for future training of machine learning models in computer vision systems. Finally, this research provides an inclusive environment within society and organizations, in particular for people with hearing impairments.","PeriodicalId":52297,"journal":{"name":"Multimodal Technologies and Interaction","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Technologies and Interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mti7080083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This research explores a novel Mexican Sign Language (MSL) lexicon video dataset containing the dynamic gestures most frequently used in MSL. Each gesture consists of a set of different versions of videos under uncontrolled conditions. The MX-ITESO-100 dataset is composed of a lexicon of 100 gestures and 5000 videos from three participants with different grammatical elements. Additionally, the dataset is evaluated in a two-step neural network model as having an accuracy greater than 99% and thus serves as a benchmark for future training of machine learning models in computer vision systems. Finally, this research provides an inclusive environment within society and organizations, in particular for people with hearing impairments.