{"title":"Sensitivity of boundary data in a shallow prairie lake model","authors":"J. Terry, K. Lindenschmidt","doi":"10.1080/07011784.2020.1758215","DOIUrl":null,"url":null,"abstract":"Abstract A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error. In these situations, the same water quality model can also be used to determine where sampling efforts are best concentrated for improving model reliability. A sensitivity analysis using a one-at-a-time approach on a shallow, eutrophic, Prairie reservoir model investigates which boundary conditions are contributing most to variability in the model. The model results show the lake model has greater sensitivity to its catchment processes than to its in-lake processes. Flows are shown to have the greatest influence on model predictions for all water quality variables tested, followed by air temperature. The lake is facing pressure from climate change, and water management decisions. Results indicate defining the water balance accurately will be a crucial factor in future monitoring programs and modelling efforts.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/07011784.2020.1758215","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/07011784.2020.1758215","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract A good water quality model needs sufficient data to characterise the waterbody, yet monitoring resources are often limited. Inadequate boundary data often contribute to model uncertainty and error. In these situations, the same water quality model can also be used to determine where sampling efforts are best concentrated for improving model reliability. A sensitivity analysis using a one-at-a-time approach on a shallow, eutrophic, Prairie reservoir model investigates which boundary conditions are contributing most to variability in the model. The model results show the lake model has greater sensitivity to its catchment processes than to its in-lake processes. Flows are shown to have the greatest influence on model predictions for all water quality variables tested, followed by air temperature. The lake is facing pressure from climate change, and water management decisions. Results indicate defining the water balance accurately will be a crucial factor in future monitoring programs and modelling efforts.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.