Pengbo Li, Can Wang, Bailin He, Jiaqing Liu, Xinyu Wu
{"title":"Kinematics analysis and gait planning for a hemiplegic exoskeleton robot","authors":"Pengbo Li, Can Wang, Bailin He, Jiaqing Liu, Xinyu Wu","doi":"10.12688/cobot.17434.1","DOIUrl":null,"url":null,"abstract":"Background: As the world's aging population increases, the number of hemiplegic patients is increasing year by year. At present, in many countries with low medical level, there are not enough rehabilitation specialists. Due to the different condition of patients, the current rehabilitation training system cannot be applied to all patients. so that patients with hemiplegia cannot get effective rehabilitation training. Methods: Through a motion capture experiment, the mechanical design of the hip joint, knee joint and ankle joint was rationally optimized based on the movement data. Through the kinematic analysis of each joint of the hemiplegic exoskeleton robot, the kinematic relationship of each joint mechanism was obtained, and the kinematics analysis of the exoskeleton robot was performed using the Denavit-Hartenberg (D-H) method. The kinematics simulation of the robot was carried out in automatic dynamic analysis of mechanical systems (ADAMS), and the theoretical calculation results were compared with the simulation results to verify the correctness of the kinematics relationship. According to the exoskeleton kinematics model, a mirror teaching method of gait planning was proposed, allowing the affected leg to imitate the movement of the healthy leg with the help of an exoskeleton robot. Conclusions: A new hemiplegic exoskeleton robot designed by Shenzhen Institute of Advanced Technology (SIAT-H) is proposed, which is lightweight, modular and anthropomorphic. The kinematics of the robot have been analyzed, and a mirror training gait is proposed to enable the patient to form a natural walking posture. Finally, the wearable walking experiment further proves the feasibility of the structure and gait planning of the hemiplegic exoskeleton robot.","PeriodicalId":29807,"journal":{"name":"Cobot","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cobot","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12688/cobot.17434.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background: As the world's aging population increases, the number of hemiplegic patients is increasing year by year. At present, in many countries with low medical level, there are not enough rehabilitation specialists. Due to the different condition of patients, the current rehabilitation training system cannot be applied to all patients. so that patients with hemiplegia cannot get effective rehabilitation training. Methods: Through a motion capture experiment, the mechanical design of the hip joint, knee joint and ankle joint was rationally optimized based on the movement data. Through the kinematic analysis of each joint of the hemiplegic exoskeleton robot, the kinematic relationship of each joint mechanism was obtained, and the kinematics analysis of the exoskeleton robot was performed using the Denavit-Hartenberg (D-H) method. The kinematics simulation of the robot was carried out in automatic dynamic analysis of mechanical systems (ADAMS), and the theoretical calculation results were compared with the simulation results to verify the correctness of the kinematics relationship. According to the exoskeleton kinematics model, a mirror teaching method of gait planning was proposed, allowing the affected leg to imitate the movement of the healthy leg with the help of an exoskeleton robot. Conclusions: A new hemiplegic exoskeleton robot designed by Shenzhen Institute of Advanced Technology (SIAT-H) is proposed, which is lightweight, modular and anthropomorphic. The kinematics of the robot have been analyzed, and a mirror training gait is proposed to enable the patient to form a natural walking posture. Finally, the wearable walking experiment further proves the feasibility of the structure and gait planning of the hemiplegic exoskeleton robot.
期刊介绍:
Cobot is a rapid multidisciplinary open access publishing platform for research focused on the interdisciplinary field of collaborative robots. The aim of Cobot is to enhance knowledge and share the results of the latest innovative technologies for the technicians, researchers and experts engaged in collaborative robot research. The platform will welcome submissions in all areas of scientific and technical research related to collaborative robots, and all articles will benefit from open peer review.
The scope of Cobot includes, but is not limited to:
● Intelligent robots
● Artificial intelligence
● Human-machine collaboration and integration
● Machine vision
● Intelligent sensing
● Smart materials
● Design, development and testing of collaborative robots
● Software for cobots
● Industrial applications of cobots
● Service applications of cobots
● Medical and health applications of cobots
● Educational applications of cobots
As well as research articles and case studies, Cobot accepts a variety of article types including method articles, study protocols, software tools, systematic reviews, data notes, brief reports, and opinion articles.