An improved Wilson equation for phase equilibrium K values estimation

IF 1 Q4 ENGINEERING, CHEMICAL
W. Monnery
{"title":"An improved Wilson equation for phase equilibrium K values estimation","authors":"W. Monnery","doi":"10.1515/cppm-2021-0009","DOIUrl":null,"url":null,"abstract":"Abstract Phase equilibrium K values are either estimated with empirical correlations or rigorously calculated based on fugacity values determined from an equation of state. There have been several empirical analytical equations such as Raoult’s Law, the Hoffman Equations (Hoffman A, Crump J, Hocott C. Equilibrium constants for a gas condensate system. J Petrol Technol 1953;5:1–10) and their modifications and the well-known Wilson Equation (Wilson G. A modified Redlich–Kwong equation of state applicable to general physical data calculations. In: AIChE National Meeting Paper15C, May 4–7, Cleveland, OH; 1969). along with several modifications. This work presents a new modification of the Wilson Equation for estimating phase equilibrium K values, predominantly for light hydrocarbon mixtures. The modification is based on correlating a subset of a database of K values, established from convergence pressure data. Results show the method to accurately correlate and predict the K value data, within 10% on average. Moreover, the predicted K factors provide remarkable results for such a simple model when used in a variety of phase equilibrium calculations. The results also show that the new model compares favorably with existing empirical analytical methods. Such a model would provide excellent initial estimates for rigorous thermodynamic calculations.","PeriodicalId":9935,"journal":{"name":"Chemical Product and Process Modeling","volume":"17 1","pages":"365 - 377"},"PeriodicalIF":1.0000,"publicationDate":"2021-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Product and Process Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cppm-2021-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Phase equilibrium K values are either estimated with empirical correlations or rigorously calculated based on fugacity values determined from an equation of state. There have been several empirical analytical equations such as Raoult’s Law, the Hoffman Equations (Hoffman A, Crump J, Hocott C. Equilibrium constants for a gas condensate system. J Petrol Technol 1953;5:1–10) and their modifications and the well-known Wilson Equation (Wilson G. A modified Redlich–Kwong equation of state applicable to general physical data calculations. In: AIChE National Meeting Paper15C, May 4–7, Cleveland, OH; 1969). along with several modifications. This work presents a new modification of the Wilson Equation for estimating phase equilibrium K values, predominantly for light hydrocarbon mixtures. The modification is based on correlating a subset of a database of K values, established from convergence pressure data. Results show the method to accurately correlate and predict the K value data, within 10% on average. Moreover, the predicted K factors provide remarkable results for such a simple model when used in a variety of phase equilibrium calculations. The results also show that the new model compares favorably with existing empirical analytical methods. Such a model would provide excellent initial estimates for rigorous thermodynamic calculations.
一种用于相平衡K值估计的改进Wilson方程
摘要相平衡K值要么用经验相关性估计,要么根据状态方程确定的逸度值严格计算。已有一些经验分析方程,如拉乌尔定律、霍夫曼方程(Hoffman A,Crump J,Hocott C.凝析油系统的平衡常数。《石油技术杂志》1953;5:1-10)及其修正,以及著名的Wilson方程(Wilson G。适用于一般物理数据计算的修正Redlich–Kwong状态方程。在:AIChE全国会议论文15C,5月4日至7日,俄亥俄州克利夫兰;1969)。以及一些修改。这项工作提出了Wilson方程的一个新的修改,用于估计相平衡K值,主要是轻烃混合物。修改是基于将从收敛压力数据建立的K值数据库的子集进行关联。结果表明,该方法能够准确地关联和预测K值数据,平均在10%以内。此外,当用于各种相平衡计算时,预测的K因子为这样一个简单的模型提供了显著的结果。结果还表明,新模型与现有的经验分析方法相比是有利的。这样的模型将为严格的热力学计算提供极好的初始估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Product and Process Modeling
Chemical Product and Process Modeling ENGINEERING, CHEMICAL-
CiteScore
2.10
自引率
11.10%
发文量
27
期刊介绍: Chemical Product and Process Modeling (CPPM) is a quarterly journal that publishes theoretical and applied research on product and process design modeling, simulation and optimization. Thanks to its international editorial board, the journal assembles the best papers from around the world on to cover the gap between product and process. The journal brings together chemical and process engineering researchers, practitioners, and software developers in a new forum for the international modeling and simulation community. Topics: equation oriented and modular simulation optimization technology for process and materials design, new modeling techniques shortcut modeling and design approaches performance of commercial and in-house simulation and optimization tools challenges faced in industrial product and process simulation and optimization computational fluid dynamics environmental process, food and pharmaceutical modeling topics drawn from the substantial areas of overlap between modeling and mathematics applied to chemical products and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信