Bagaswoto Poedjomartono, Hanif Afkari, E. Meiyanto, Alan Anderson Bangun, Y. Sardjono
{"title":"Boron Neutron Capture Therapy for Cancer: Future Prospects in Indonesia","authors":"Bagaswoto Poedjomartono, Hanif Afkari, E. Meiyanto, Alan Anderson Bangun, Y. Sardjono","doi":"10.29037/AJSTD.510","DOIUrl":null,"url":null,"abstract":"Boron neutron capture therapy (BNCT) is a form of cancer therapy based on the interaction of low-energy thermal neutrons and boron-10 (10-B) to produce alpha radiation from He-4 and Li-7 with a high linear energy transfer. A beam of neutrons irradiates a boron drug injected into the tumor, resulting in the boron-injected cancer cells receiving a lethal dose of radiation with the surrounding, healthy cells being minimally affected. Two boron drugs have been used clinically in BNCT, boron sodium captate (BSH) and borophenylalanine (BPA), while a third, pentagamaboronon-0 (PGB-0), is currently under development in the Faculty of Pharmacy of Universitas Gadjah Mada, Indonesia. In Indonesia, there has been a growing interest in the study and use of BNCT to treat cancer, as this method is expected to be safer and more effective than traditional cancer treatment methods.","PeriodicalId":8479,"journal":{"name":"Asean Journal on Science and Technology for Development","volume":"35 1","pages":"199-201"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asean Journal on Science and Technology for Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29037/AJSTD.510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 1
Abstract
Boron neutron capture therapy (BNCT) is a form of cancer therapy based on the interaction of low-energy thermal neutrons and boron-10 (10-B) to produce alpha radiation from He-4 and Li-7 with a high linear energy transfer. A beam of neutrons irradiates a boron drug injected into the tumor, resulting in the boron-injected cancer cells receiving a lethal dose of radiation with the surrounding, healthy cells being minimally affected. Two boron drugs have been used clinically in BNCT, boron sodium captate (BSH) and borophenylalanine (BPA), while a third, pentagamaboronon-0 (PGB-0), is currently under development in the Faculty of Pharmacy of Universitas Gadjah Mada, Indonesia. In Indonesia, there has been a growing interest in the study and use of BNCT to treat cancer, as this method is expected to be safer and more effective than traditional cancer treatment methods.