Learning the Effects of Physical Actions in a Multi-modal Environment

Gautier Dagan, Frank Keller, A. Lascarides
{"title":"Learning the Effects of Physical Actions in a Multi-modal Environment","authors":"Gautier Dagan, Frank Keller, A. Lascarides","doi":"10.48550/arXiv.2301.11845","DOIUrl":null,"url":null,"abstract":"Large Language Models (LLMs) handle physical commonsense information inadequately. As a result of being trained in a disembodied setting, LLMs often fail to predict an action’s outcome in a given environment. However, predicting the effects of an action before it is executed is crucial in planning, where coherent sequences of actions are often needed to achieve a goal. Therefore, we introduce the multi-modal task of predicting the outcomes of actions solely from realistic sensory inputs (images and text). Next, we extend an LLM to model latent representations of objects to better predict action outcomes in an environment. We show that multi-modal models can capture physical commonsense when augmented with visual information. Finally, we evaluate our model’s performance on novel actions and objects and find that combining modalities help models to generalize and learn physical commonsense reasoning better.","PeriodicalId":73025,"journal":{"name":"Findings (Sydney (N.S.W.)","volume":"1 1","pages":"133-148"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Findings (Sydney (N.S.W.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2301.11845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Large Language Models (LLMs) handle physical commonsense information inadequately. As a result of being trained in a disembodied setting, LLMs often fail to predict an action’s outcome in a given environment. However, predicting the effects of an action before it is executed is crucial in planning, where coherent sequences of actions are often needed to achieve a goal. Therefore, we introduce the multi-modal task of predicting the outcomes of actions solely from realistic sensory inputs (images and text). Next, we extend an LLM to model latent representations of objects to better predict action outcomes in an environment. We show that multi-modal models can capture physical commonsense when augmented with visual information. Finally, we evaluate our model’s performance on novel actions and objects and find that combining modalities help models to generalize and learn physical commonsense reasoning better.
在多模态环境中学习身体动作的效果
大型语言模型(LLM)不能充分处理物理常识信息。由于在一个没有实体的环境中接受训练,LLM往往无法预测特定环境中的行动结果。然而,在行动执行之前预测行动的效果在规划中至关重要,因为实现目标通常需要连贯的行动序列。因此,我们引入了仅从现实的感官输入(图像和文本)预测动作结果的多模态任务。接下来,我们将LLM扩展到对对象的潜在表示进行建模,以更好地预测环境中的行动结果。我们证明,当使用视觉信息进行增强时,多模态模型可以捕捉物理常识。最后,我们评估了我们的模型在新动作和对象上的性能,发现结合模态有助于模型更好地泛化和学习物理常识推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信