Niklas Meyer, Eric L. Wagemann, Alexander Jackstadt, Robert Seifried
{"title":"Material and particle size sensitivity analysis on coefficient of restitution in low-velocity normal impacts","authors":"Niklas Meyer, Eric L. Wagemann, Alexander Jackstadt, Robert Seifried","doi":"10.1007/s40571-022-00471-z","DOIUrl":null,"url":null,"abstract":"<div><p>In many granular processes, impacts play a crucial role. These impacts are often described by the coefficient of restitution (COR). This COR does not only depend on impact velocity but also on the material pairing, the shape of impacting bodies, number of impacts, etc. This paper analyzes and compares the sensitivity of the COR for often seen material pairings metal–metal and metal–polymer. For experimental investigations, a steel sphere impacts different planar material probes in a defined manner, e.g., a sphere–wall contact is reproduced. While the metal–metal impacts show a significant dependency on impact velocity, the metal–polymer impacts show only little influence of the impact velocity. Also, repeated impacts onto the same spot have a significant influence on metal–metal impacts, while metal–polymer impacts are not affected. To gain insights not only about the macroscopic behavior of impacts but also about the microscopic behavior, finite element simulations are performed using an efficient 2D axisymmetric model and viscoelastic and elastic–viscoplastic material models. A good agreement between experiments and FEM simulations are achieved for the utilized material pairings. Then, the influence of the sphere’s size is studied. Afterward, a deeper look into the energy dissipation process during contact is investigated. Finally, the contact duration and normal force in the contact zone are studied experimentally.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"9 6","pages":"1293 - 1308"},"PeriodicalIF":2.8000,"publicationDate":"2022-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-022-00471-z.pdf","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-022-00471-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 5
Abstract
In many granular processes, impacts play a crucial role. These impacts are often described by the coefficient of restitution (COR). This COR does not only depend on impact velocity but also on the material pairing, the shape of impacting bodies, number of impacts, etc. This paper analyzes and compares the sensitivity of the COR for often seen material pairings metal–metal and metal–polymer. For experimental investigations, a steel sphere impacts different planar material probes in a defined manner, e.g., a sphere–wall contact is reproduced. While the metal–metal impacts show a significant dependency on impact velocity, the metal–polymer impacts show only little influence of the impact velocity. Also, repeated impacts onto the same spot have a significant influence on metal–metal impacts, while metal–polymer impacts are not affected. To gain insights not only about the macroscopic behavior of impacts but also about the microscopic behavior, finite element simulations are performed using an efficient 2D axisymmetric model and viscoelastic and elastic–viscoplastic material models. A good agreement between experiments and FEM simulations are achieved for the utilized material pairings. Then, the influence of the sphere’s size is studied. Afterward, a deeper look into the energy dissipation process during contact is investigated. Finally, the contact duration and normal force in the contact zone are studied experimentally.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.