{"title":"Exact Controllability and Stabilization of Locally Coupled Wave Equations: Theoretical Results","authors":"S. Gerbi, Chiraz Kassem, Amina Mortada, A. Wehbe","doi":"10.4171/ZAA/1673","DOIUrl":null,"url":null,"abstract":"In this paper, we study the exact controllability and stabilization of a system of two wave equations coupled by velocities with an internal, local control acting on only one equation. We distinguish two cases. In the first one, when the waves propagate at the same speed: using a frequency domain approach combined with multiplier technique, we prove that the system is exponentially stable when the coupling region satisfies the geometric control condition GCC. Following a result of Haraux ([11]), we establish the main indirect observability inequality. This results leads, by the HUM method, to prove that the total system is exactly controllable by means of locally distributed control. In the second case, when the waves propagate at different speed, we establish an exponential decay rate in the weak energy space. Consequently, the system is exactly controllable using a result of [11]. Finally, numerically, we provide results that insure the theoretical results of [13].","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ZAA/1673","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 9
Abstract
In this paper, we study the exact controllability and stabilization of a system of two wave equations coupled by velocities with an internal, local control acting on only one equation. We distinguish two cases. In the first one, when the waves propagate at the same speed: using a frequency domain approach combined with multiplier technique, we prove that the system is exponentially stable when the coupling region satisfies the geometric control condition GCC. Following a result of Haraux ([11]), we establish the main indirect observability inequality. This results leads, by the HUM method, to prove that the total system is exactly controllable by means of locally distributed control. In the second case, when the waves propagate at different speed, we establish an exponential decay rate in the weak energy space. Consequently, the system is exactly controllable using a result of [11]. Finally, numerically, we provide results that insure the theoretical results of [13].
期刊介绍:
The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications.
To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.