{"title":"Pulsar timing residual induced by wideband ultralight dark matter with spin 0,1,2","authors":"Sichun Sun, Xing-Yu Yang, Yun-Long Zhang","doi":"10.1103/PhysRevD.106.066006","DOIUrl":null,"url":null,"abstract":"The coherent oscillation of ultralight dark matter in the mass regime around $10^{-23}$ eV induces changes in gravitational potential with the frequency in the nanohertz range. This effect is known to produce a monochromatic signal in the pulsar timing residuals. Here we discuss a multifield scenario that produces a wide spectrum of frequencies, such that the ultralight particle oscillation can mimic the pulsar timing signal of stochastic common spectrum process. We discuss how ultralight dark matter with various spins produces such a wide band spectrum on pulsar timing residuals and perform the Bayesian analysis to constrain the parameters. It turns out that the stochastic background detected by NANOGrav can be associated with a wideband ultralight dark matter.","PeriodicalId":48711,"journal":{"name":"Physical Review D","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2021-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/PhysRevD.106.066006","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 7
Abstract
The coherent oscillation of ultralight dark matter in the mass regime around $10^{-23}$ eV induces changes in gravitational potential with the frequency in the nanohertz range. This effect is known to produce a monochromatic signal in the pulsar timing residuals. Here we discuss a multifield scenario that produces a wide spectrum of frequencies, such that the ultralight particle oscillation can mimic the pulsar timing signal of stochastic common spectrum process. We discuss how ultralight dark matter with various spins produces such a wide band spectrum on pulsar timing residuals and perform the Bayesian analysis to constrain the parameters. It turns out that the stochastic background detected by NANOGrav can be associated with a wideband ultralight dark matter.
期刊介绍:
Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics.
PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including:
Particle physics experiments,
Electroweak interactions,
Strong interactions,
Lattice field theories, lattice QCD,
Beyond the standard model physics,
Phenomenological aspects of field theory, general methods,
Gravity, cosmology, cosmic rays,
Astrophysics and astroparticle physics,
General relativity,
Formal aspects of field theory, field theory in curved space,
String theory, quantum gravity, gauge/gravity duality.