{"title":"A Cross-Domain Multimodal Supervised Latent Topic Model for Item Tagging and Cold-Start Recommendation","authors":"R. Tang, Cheng Yang, Yuxuan Wang","doi":"10.1109/MMUL.2023.3242455","DOIUrl":null,"url":null,"abstract":"Cross-domain data analysis is playing an increasingly important role in media convergence and can be adopted for many applications. Most existing methods consider the domain discrimination as the multimodal representation difference or the imbalanced item classification distribution, ignoring the different tag semantics among domains. To this end, we propose an explainable cross-domain multimodal supervised latent topic (CDMSLT) model and evaluate our model on two applications. First, we learn a common topic space that is capable of explaining both domain specification and commonality. Second, we apply our model to a multilabel classification task and put forward a cross-domain item tagging method. Third, combining user behaviors and the CDMSLT model, we propose a cross-domain recommendation algorithm that could estimate the user preference on new unseen domains. This article proves the effectiveness of the CDMSLT model by comparing these two applications with existing algorithms in a cross-domain scenario on the Douban dataset.","PeriodicalId":13240,"journal":{"name":"IEEE MultiMedia","volume":"30 1","pages":"48-62"},"PeriodicalIF":2.3000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE MultiMedia","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1109/MMUL.2023.3242455","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Cross-domain data analysis is playing an increasingly important role in media convergence and can be adopted for many applications. Most existing methods consider the domain discrimination as the multimodal representation difference or the imbalanced item classification distribution, ignoring the different tag semantics among domains. To this end, we propose an explainable cross-domain multimodal supervised latent topic (CDMSLT) model and evaluate our model on two applications. First, we learn a common topic space that is capable of explaining both domain specification and commonality. Second, we apply our model to a multilabel classification task and put forward a cross-domain item tagging method. Third, combining user behaviors and the CDMSLT model, we propose a cross-domain recommendation algorithm that could estimate the user preference on new unseen domains. This article proves the effectiveness of the CDMSLT model by comparing these two applications with existing algorithms in a cross-domain scenario on the Douban dataset.
期刊介绍:
The magazine contains technical information covering a broad range of issues in multimedia systems and applications. Articles discuss research as well as advanced practice in hardware/software and are expected to span the range from theory to working systems. Especially encouraged are papers discussing experiences with new or advanced systems and subsystems. To avoid unnecessary overlap with existing publications, acceptable papers must have a significant focus on aspects unique to multimedia systems and applications. These aspects are likely to be related to the special needs of multimedia information compared to other electronic data, for example, the size requirements of digital media and the importance of time in the representation of such media. The following list is not exhaustive, but is representative of the topics that are covered: Hardware and software for media compression, coding & processing; Media representations & standards for storage, editing, interchange, transmission & presentation; Hardware platforms supporting multimedia applications; Operating systems suitable for multimedia applications; Storage devices & technologies for multimedia information; Network technologies, protocols, architectures & delivery techniques intended for multimedia; Synchronization issues; Multimedia databases; Formalisms for multimedia information systems & applications; Programming paradigms & languages for multimedia; Multimedia user interfaces; Media creation integration editing & management; Creation & modification of multimedia applications.