Effects of 3D deformation and nonlinear stress–strain relationship on the Brazilian test for a transversely isotropic rock

IF 9.4 1区 工程技术 Q1 ENGINEERING, GEOLOGICAL
Juhyi Yim , Yoonsung Lee , Seungki Hong , Ki-Bok Min
{"title":"Effects of 3D deformation and nonlinear stress–strain relationship on the Brazilian test for a transversely isotropic rock","authors":"Juhyi Yim ,&nbsp;Yoonsung Lee ,&nbsp;Seungki Hong ,&nbsp;Ki-Bok Min","doi":"10.1016/j.jrmge.2023.06.013","DOIUrl":null,"url":null,"abstract":"<div><p>To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.</p></div>","PeriodicalId":54219,"journal":{"name":"Journal of Rock Mechanics and Geotechnical Engineering","volume":"15 12","pages":"Pages 3221-3229"},"PeriodicalIF":9.4000,"publicationDate":"2023-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1674775523002159/pdfft?md5=95676d6fb80464bf59aa6fc05ccabb1a&pid=1-s2.0-S1674775523002159-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Rock Mechanics and Geotechnical Engineering","FirstCategoryId":"1087","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674775523002159","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To improve the accuracy of indirect tensile strength for a transversely isotropic rock in the Brazilian test, this study considered the three-dimensional (3D) deformation and the nonlinear stress–strain relationship. A parametric study of a numerical Brazilian test was performed for a general range of elastic constants, revealing that the 3D modeling evaluated the indirect tensile strength up to 40% higher than the plane stress modeling. For the actual Asan gneiss, the 3D model evaluated the indirect tensile strength up to 10% higher and slightly enhanced the accuracy of deformation estimation compared with the plane stress model. The nonlinearity in stress–strain curve of Asan gneiss under uniaxial compression was then considered, such that the evaluated indirect tensile strength was affected by up to 10% and its anisotropy agreed well with the physical intuition. The estimation of deformation was significantly enhanced. The further validation on the nonlinear model is expected as future research.

三维变形和非线性应力应变关系对横向各向同性岩石巴西试验的影响
为了提高巴西横向各向同性岩石间接抗拉强度的准确性,本研究考虑了三维(3D)变形和非线性应力应变关系。在巴西进行的数值试验中,对弹性常数进行了参数化研究,结果表明,3D模型评估的间接抗拉强度比平面应力模型高40%。对于实际牙山片麻岩,与平面应力模型相比,三维模型估算的间接抗拉强度提高了10%,变形估算精度略有提高。考虑单轴压缩作用下牙山片麻岩应力-应变曲线的非线性,其间接抗拉强度受影响达10%,且各向异性与物理直觉吻合较好。变形的估计得到了显著增强。对非线性模型的进一步验证是今后的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Rock Mechanics and Geotechnical Engineering
Journal of Rock Mechanics and Geotechnical Engineering Earth and Planetary Sciences-Geotechnical Engineering and Engineering Geology
CiteScore
11.60
自引率
6.80%
发文量
227
审稿时长
48 days
期刊介绍: The Journal of Rock Mechanics and Geotechnical Engineering (JRMGE), overseen by the Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, is dedicated to the latest advancements in rock mechanics and geotechnical engineering. It serves as a platform for global scholars to stay updated on developments in various related fields including soil mechanics, foundation engineering, civil engineering, mining engineering, hydraulic engineering, petroleum engineering, and engineering geology. With a focus on fostering international academic exchange, JRMGE acts as a conduit between theoretical advancements and practical applications. Topics covered include new theories, technologies, methods, experiences, in-situ and laboratory tests, developments, case studies, and timely reviews within the realm of rock mechanics and geotechnical engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信