Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations

IF 4.703 3区 材料科学
Kirtan P. Dixit, Don A. Gregory
{"title":"Nanoscale modeling of dynamically tunable planar optical absorbers utilizing InAs and InSb in metal-oxide-semiconductor–metal configurations","authors":"Kirtan P. Dixit,&nbsp;Don A. Gregory","doi":"10.1186/s11671-023-03879-5","DOIUrl":null,"url":null,"abstract":"<div><p>The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry–Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry–Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change.</p></div>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"18 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s11671-023-03879-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-023-03879-5","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The attainment of dynamic tunability in spectrally selective optical absorption has been a longstanding objective in modern optics. Typically, Fabry–Perot resonators comprising metal and semiconductor thin films have been employed for spectrally selective light absorption. In such resonators, the resonance wavelength can be altered via structural modifications. The research has progressed further with the advent of specialized patterning of thin films and the utilization of metasurfaces. Nonetheless, achieving dynamic tuning of the absorption wavelength without altering the geometry of the thin film or without resorting to lithographic fabrication still poses a challenge. In this study, the incorporation of a metal-oxide-semiconductor (MOS) architecture into the Fabry–Perot nanocavity is shown to yield dynamic spectral tuning in a perfect narrowband light absorber within the visible range. Such spectral tuning is achieved using n-type-doped indium antimonide and n-type-doped indium arsenide as semiconductors in a MOS-type structure. These semiconductors offer significant tuning of their optical properties via electrically induced carrier accumulation. The planar structure of the absorber models presented facilitates simple thin-film fabrication. With judicious material selection and appropriate bias voltage, a spectral shift of 47 nm can be achieved within the visible range, thus producing a discernible color change.

Abstract Image

利用金属-氧化物-半导体-金属结构的InAs和InSb动态可调平面光学吸收器的纳米尺度建模
实现光谱选择性光吸收的动态可调性一直是现代光学研究的一个长期目标。通常,由金属和半导体薄膜组成的法布里-珀罗谐振器已被用于光谱选择性光吸收。在这种谐振器中,共振波长可以通过结构修改而改变。随着薄膜专用图案化技术的出现和超表面技术的应用,这方面的研究得到了进一步的发展。然而,在不改变薄膜几何形状或不采用光刻技术的情况下实现吸收波长的动态调谐仍然是一个挑战。在这项研究中,将金属氧化物半导体(MOS)结构结合到Fabry-Perot纳米腔中,可以在可见光范围内的完美窄带光吸收器中产生动态光谱调谐。这种光谱调谐是使用n型掺杂锑化铟和n型掺杂砷化铟作为mos型结构的半导体来实现的。这些半导体通过电诱导载流子积累提供了显著的光学特性调谐。所提出的吸收体模型的平面结构便于薄膜的制作。通过选择合适的材料和适当的偏置电压,可以在可见光范围内实现47 nm的光谱位移,从而产生可识别的颜色变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
15.00
自引率
0.00%
发文量
110
审稿时长
2.5 months
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信