Principles and applications of mathematical and physical modelling of metallurgical processes

IF 0.9 Q3 MINING & MINERAL PROCESSING
H. Sohn
{"title":"Principles and applications of mathematical and physical modelling of metallurgical processes","authors":"H. Sohn","doi":"10.1080/25726641.2019.1706376","DOIUrl":null,"url":null,"abstract":"ABSTRACT This article reviews the principles and methods for formulating mathematical or physical models that are useful in the design, analysis and optimization of metallurgical processes. Mathematical models based on first principles are emphasised. Examples of developing new processes based on a first-principle mathematical model or a physical model are presented. Cautions and pitfalls associated with the formulation and application of mathematical models are discussed. The reader is encouraged to carefully examine correctness of the approach and assumptions made in the formulation in order to avoid an erroneous application of a model. For complex processes requiring harsh conditions, physical models are useful. The interpretation and utilisation of the results from physical models can be difficult and sometimes even misleading. This problem is greatly assuaged by combining physical modelling with mathematical modelling. For example, the use of computational fluid dynamics greatly improves the physical modelling of systems involving complex fluid flow.","PeriodicalId":43710,"journal":{"name":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","volume":"129 1","pages":"117 - 144"},"PeriodicalIF":0.9000,"publicationDate":"2020-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/25726641.2019.1706376","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mineral Processing and Extractive Metallurgy-Transactions of the Institutions of Mining and Metallurgy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/25726641.2019.1706376","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MINING & MINERAL PROCESSING","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT This article reviews the principles and methods for formulating mathematical or physical models that are useful in the design, analysis and optimization of metallurgical processes. Mathematical models based on first principles are emphasised. Examples of developing new processes based on a first-principle mathematical model or a physical model are presented. Cautions and pitfalls associated with the formulation and application of mathematical models are discussed. The reader is encouraged to carefully examine correctness of the approach and assumptions made in the formulation in order to avoid an erroneous application of a model. For complex processes requiring harsh conditions, physical models are useful. The interpretation and utilisation of the results from physical models can be difficult and sometimes even misleading. This problem is greatly assuaged by combining physical modelling with mathematical modelling. For example, the use of computational fluid dynamics greatly improves the physical modelling of systems involving complex fluid flow.
冶金过程数学和物理建模的原理和应用
本文综述了建立数学或物理模型的原理和方法,这些模型在冶金过程的设计、分析和优化中很有用。强调了基于第一性原理的数学模型。介绍了基于第一原理数学模型或物理模型开发新工艺的例子。讨论了与数学模型的制定和应用相关的注意事项和陷阱。鼓励读者仔细检查公式中方法和假设的正确性,以避免模型的错误应用。对于需要苛刻条件的复杂过程,物理模型非常有用。对物理模型结果的解释和利用可能很困难,有时甚至会产生误导。通过将物理建模与数学建模相结合,大大缓解了这个问题。例如,计算流体动力学的使用大大改进了涉及复杂流体流动的系统的物理建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
0.00%
发文量
6
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信