Instantaneous activation energy of alkali activated materials

Q2 Engineering
Shiju Joseph, S. Uppalapati, Ö. Cizer
{"title":"Instantaneous activation energy of alkali activated materials","authors":"Shiju Joseph, S. Uppalapati, Ö. Cizer","doi":"10.21809/RILEMTECHLETT.2018.78","DOIUrl":null,"url":null,"abstract":"Alkali activated materials (AAM) are generally cured at high temperatures to compensate for the low reaction rate. Higher temperature accelerates the reaction of AAM as in cement-based materials and this effect is generally predicted using Arrhenius equation based on the activation energy. While apparent activation energy is calculated from parallel isothermal calorimetry measurements at different temperatures, instantaneous activation energy is typically measured using a differential scanning calorimeter. Compared to the apparent activation energy, instantaneous activation energy has minimal effects on the microstructural changes due to the variation in temperature. In this work, the evolution of activation energy was determined by traditional methods and was compared with the instantaneous activation energy. It was found that while the activation energy changed with the progress of reaction over traditional methods, the instantaneous activation energy did not show any changes / or remained the same. The instantaneous activation energy was also found to be higher compared to the apparent activation energy determined with traditional methods.","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/RILEMTECHLETT.2018.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 6

Abstract

Alkali activated materials (AAM) are generally cured at high temperatures to compensate for the low reaction rate. Higher temperature accelerates the reaction of AAM as in cement-based materials and this effect is generally predicted using Arrhenius equation based on the activation energy. While apparent activation energy is calculated from parallel isothermal calorimetry measurements at different temperatures, instantaneous activation energy is typically measured using a differential scanning calorimeter. Compared to the apparent activation energy, instantaneous activation energy has minimal effects on the microstructural changes due to the variation in temperature. In this work, the evolution of activation energy was determined by traditional methods and was compared with the instantaneous activation energy. It was found that while the activation energy changed with the progress of reaction over traditional methods, the instantaneous activation energy did not show any changes / or remained the same. The instantaneous activation energy was also found to be higher compared to the apparent activation energy determined with traditional methods.
碱活性物质的瞬时活化能
碱活性材料(AAM)通常在高温下固化以补偿低反应速率。在水泥基材料中,更高的温度加速了AAM的反应,并且通常使用基于活化能的阿伦尼斯方程来预测这种影响。虽然表观活化能是通过不同温度下的平行等温量热法测量来计算的,但瞬时活化能通常是使用差示扫描量热计来测量的。与表观活化能相比,瞬时活化能对温度变化引起的微观结构变化的影响最小。在这项工作中,通过传统方法确定了活化能的演变,并与瞬时活化能进行了比较。研究发现,与传统方法相比,活化能随着反应的进行而变化,但瞬时活化能没有任何变化/或保持不变。与用传统方法测定的表观活化能相比,瞬时活化能也被发现更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信