Revising the 2007 Peru Earthquake Damage Monitoring Using Machine Learning Models and Satellite Imagery

IF 0.7 Q4 GEOSCIENCES, MULTIDISCIPLINARY
B. Adriano, H. Miura, Wen Liu, M. Matsuoka, Eduardo Portuguez, M. Diaz, M. Estrada
{"title":"Revising the 2007 Peru Earthquake Damage Monitoring Using Machine Learning Models and Satellite Imagery","authors":"B. Adriano, H. Miura, Wen Liu, M. Matsuoka, Eduardo Portuguez, M. Diaz, M. Estrada","doi":"10.20965/jdr.2023.p0379","DOIUrl":null,"url":null,"abstract":"We revised the building damage caused by the 2007 Pisco-Peru Earthquake using machine learning models and high-resolution satellite imagery. A framework for rapidly detecting collapsed buildings was proposed in the project “Development of Integrated Expert System for Estimation and Observation of Damage Level of Infrastructure in Lima Metropolitan Area” (JST-JICA SATREPS). The framework is based on a semantic segmentation model trained on freely available satellite and aerial imagery that does not include the target area. Thus, the generalization performance of the proposed framework was analyzed. Qualitative and quantitative analyses demonstrated that the proposed framework successfully predicted the distribution of collapsed buildings in Pisco. Moreover, it also reflects the ability to detect newly placed shelters. Our current trained model enables the rapid estimation of damaged buildings, crucial information for emergency response, and temporary refuges, which are also essential for fast rescue actions.","PeriodicalId":46831,"journal":{"name":"Journal of Disaster Research","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Disaster Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20965/jdr.2023.p0379","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We revised the building damage caused by the 2007 Pisco-Peru Earthquake using machine learning models and high-resolution satellite imagery. A framework for rapidly detecting collapsed buildings was proposed in the project “Development of Integrated Expert System for Estimation and Observation of Damage Level of Infrastructure in Lima Metropolitan Area” (JST-JICA SATREPS). The framework is based on a semantic segmentation model trained on freely available satellite and aerial imagery that does not include the target area. Thus, the generalization performance of the proposed framework was analyzed. Qualitative and quantitative analyses demonstrated that the proposed framework successfully predicted the distribution of collapsed buildings in Pisco. Moreover, it also reflects the ability to detect newly placed shelters. Our current trained model enables the rapid estimation of damaged buildings, crucial information for emergency response, and temporary refuges, which are also essential for fast rescue actions.
利用机器学习模型和卫星图像对2007年秘鲁地震灾害监测的修订
我们使用机器学习模型和高分辨率卫星图像修正了2007年皮斯科-秘鲁地震造成的建筑物损坏。在“利马大都会区基础设施损坏程度评估和观测综合专家系统开发”项目(JST-JICA SATREPS)中提出了一个快速检测倒塌建筑物的框架。该框架基于在不包括目标区域的免费卫星和航空图像上训练的语义分割模型。因此,分析了所提出的框架的泛化性能。定性和定量分析表明,所提出的框架成功地预测了皮斯科倒塌建筑物的分布。此外,它还反映了探测新安置避难所的能力。我们目前训练的模型能够快速估计受损建筑、应急响应的关键信息和临时避难所,这对快速救援行动也至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Disaster Research
Journal of Disaster Research GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
1.60
自引率
37.50%
发文量
113
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信