{"title":"NONLINEAR DYNAMIC BEHAVIORS OF THE FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV–KUZNETSOV EQUATION","authors":"Kangkang Wang, Peng Xu, Feng Shi","doi":"10.1142/s0218348x23500883","DOIUrl":null,"url":null,"abstract":"This paper derives a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation based on the conformable fractional derivative for the first time. Some new types of the fractal traveling wave solutions are successfully constructed by applying a novel approach which is called the fractal semi-inverse variational method. To our knowledge, the obtained results are all new and have not reported in the other literature. In addition, the dynamic characteristics of the different solutions on the fractal space are discussed and presented via the 3D plots, 2D contour and 2D curves. It can be found that: (1) The fractal order can not only affect the peak value of the fractal traveling waves, but also affect the wave structures, that is, the smaller the fractional order value is, the more curved the waveform is, and the slower waveform changes. (2) In the fractal space, the fractal wave keeps its shape unchanged in the process of the propagation and still meets the energy conservation. The methods in this paper can be used to study the other fractal PDEs in the physics, and the findings are expected to bring some new thinking and inspiration toward the fractal theory in physics.","PeriodicalId":55144,"journal":{"name":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals-Complex Geometry Patterns and Scaling in Nature and Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218348x23500883","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7
Abstract
This paper derives a new fractional (3+1)-dimensional modified Zakharov–Kuznetsov equation based on the conformable fractional derivative for the first time. Some new types of the fractal traveling wave solutions are successfully constructed by applying a novel approach which is called the fractal semi-inverse variational method. To our knowledge, the obtained results are all new and have not reported in the other literature. In addition, the dynamic characteristics of the different solutions on the fractal space are discussed and presented via the 3D plots, 2D contour and 2D curves. It can be found that: (1) The fractal order can not only affect the peak value of the fractal traveling waves, but also affect the wave structures, that is, the smaller the fractional order value is, the more curved the waveform is, and the slower waveform changes. (2) In the fractal space, the fractal wave keeps its shape unchanged in the process of the propagation and still meets the energy conservation. The methods in this paper can be used to study the other fractal PDEs in the physics, and the findings are expected to bring some new thinking and inspiration toward the fractal theory in physics.
期刊介绍:
The investigation of phenomena involving complex geometry, patterns and scaling has gone through a spectacular development and applications in the past decades. For this relatively short time, geometrical and/or temporal scaling have been shown to represent the common aspects of many processes occurring in an unusually diverse range of fields including physics, mathematics, biology, chemistry, economics, engineering and technology, and human behavior. As a rule, the complex nature of a phenomenon is manifested in the underlying intricate geometry which in most of the cases can be described in terms of objects with non-integer (fractal) dimension. In other cases, the distribution of events in time or various other quantities show specific scaling behavior, thus providing a better understanding of the relevant factors determining the given processes.
Using fractal geometry and scaling as a language in the related theoretical, numerical and experimental investigations, it has been possible to get a deeper insight into previously intractable problems. Among many others, a better understanding of growth phenomena, turbulence, iterative functions, colloidal aggregation, biological pattern formation, stock markets and inhomogeneous materials has emerged through the application of such concepts as scale invariance, self-affinity and multifractality.
The main challenge of the journal devoted exclusively to the above kinds of phenomena lies in its interdisciplinary nature; it is our commitment to bring together the most recent developments in these fields so that a fruitful interaction of various approaches and scientific views on complex spatial and temporal behaviors in both nature and society could take place.