Nazerke Dauletbayevna Nurabay, M. Abutalip, R. K. Rakhmetullayeva, G. Mun
{"title":"Development of the technology for obtaining new hydrogel materials based on acrylic monomers","authors":"Nazerke Dauletbayevna Nurabay, M. Abutalip, R. K. Rakhmetullayeva, G. Mun","doi":"10.15328/CB959","DOIUrl":null,"url":null,"abstract":"Al-Farabi Kazakh National University, Almaty, Kazakhstan *Е-mail: grigoriy.mun@kaznu.kz Smart water-soluble polymers and hydrogels are capable to reversibly react to insignificant changes of the medium properties (pH, temperature, ionic strength, a presence of some substances, illumination, electric field). The reacting of a system is visible to the naked eye (the formation of a new phase in a homogeneous solution, or compression of the hydrogel). The properties of such polymers and hydrogels are considered. For the first time, the stimuli-responsive polymeric hydrogels based on N-isopropylacrylamide (NIPAAM), 2-hydroxyethyl acrylate (HEA) and acrylic acid (AA) have been synthesized by free initiation of radical copolymerization. The purpose of the research is to obtain stimuli-responsive cross-linked terpolymers based on N-isopropylacrylamide, 2-hydroxyethyl acrylate and acrylic acid and study their physicochemical properties. The physicochemical methods such as scanning electron microscopy, differential scanning calorimetry, infrared spectroscopy, gravimetry, cathetometric and thermogravimetric analyses were used in this study. To determine the thermal and pH – sensitivity of the modified copolymer, the effect of temperature on the NIPAAMНEA-AA nets (in different pH media) was studied. They are characterized by a thermally induced collapse and a dependence on a medium pH. The interaction of copolymers with drugs such as lincomycin and gentamicin was studied for using the new copolymers as a drug carrier. To study the antibacterial properties and the transportation of physiologically active substances of hydrogel, the elimination of specially prepared bacteria by hydrogels with various medicinal ingredients were conducted.","PeriodicalId":9860,"journal":{"name":"Chemical Bulletin of Kazakh National University","volume":"1 1","pages":"20-29"},"PeriodicalIF":0.3000,"publicationDate":"2017-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Bulletin of Kazakh National University","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15328/CB959","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Al-Farabi Kazakh National University, Almaty, Kazakhstan *Е-mail: grigoriy.mun@kaznu.kz Smart water-soluble polymers and hydrogels are capable to reversibly react to insignificant changes of the medium properties (pH, temperature, ionic strength, a presence of some substances, illumination, electric field). The reacting of a system is visible to the naked eye (the formation of a new phase in a homogeneous solution, or compression of the hydrogel). The properties of such polymers and hydrogels are considered. For the first time, the stimuli-responsive polymeric hydrogels based on N-isopropylacrylamide (NIPAAM), 2-hydroxyethyl acrylate (HEA) and acrylic acid (AA) have been synthesized by free initiation of radical copolymerization. The purpose of the research is to obtain stimuli-responsive cross-linked terpolymers based on N-isopropylacrylamide, 2-hydroxyethyl acrylate and acrylic acid and study their physicochemical properties. The physicochemical methods such as scanning electron microscopy, differential scanning calorimetry, infrared spectroscopy, gravimetry, cathetometric and thermogravimetric analyses were used in this study. To determine the thermal and pH – sensitivity of the modified copolymer, the effect of temperature on the NIPAAMНEA-AA nets (in different pH media) was studied. They are characterized by a thermally induced collapse and a dependence on a medium pH. The interaction of copolymers with drugs such as lincomycin and gentamicin was studied for using the new copolymers as a drug carrier. To study the antibacterial properties and the transportation of physiologically active substances of hydrogel, the elimination of specially prepared bacteria by hydrogels with various medicinal ingredients were conducted.