SOME CRITICAL POINT RESULTS FOR FRECHET MANIFOLDS

K. Eftekharinasab
{"title":"SOME CRITICAL POINT RESULTS FOR FRECHET MANIFOLDS","authors":"K. Eftekharinasab","doi":"10.46753/pjaa.2022.v09i01.003","DOIUrl":null,"url":null,"abstract":"We prove a so-called linking theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem for Keller $ C^1$-functional on $ C^1 $- Frechet manifolds. Our approach relies on a deformation result which is not implemented by considering the negative pseudo-gradient flows. Furthermore, for mappings between Frechet manifolds we provide a set of sufficient conditions in terms of the Palais-Smale condition that indicates when a local diffeomorphism is a global one.","PeriodicalId":37079,"journal":{"name":"Poincare Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poincare Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46753/pjaa.2022.v09i01.003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We prove a so-called linking theorem and some of its corollaries, namely a mountain pass theorem and a three critical points theorem for Keller $ C^1$-functional on $ C^1 $- Frechet manifolds. Our approach relies on a deformation result which is not implemented by considering the negative pseudo-gradient flows. Furthermore, for mappings between Frechet manifolds we provide a set of sufficient conditions in terms of the Palais-Smale condition that indicates when a local diffeomorphism is a global one.
FRECHET流形的一些临界点结果
我们证明了C^1$- Frechet流形上Keller $ C^1$-泛函的一个关隘定理和一个三临界点定理。我们的方法依赖于变形结果,而不是通过考虑负伪梯度流来实现的。此外,对于Frechet流形之间的映射,我们用Palais-Smale条件给出了一组充分条件,表明局部微分同态何时为全局微分同态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Poincare Journal of Analysis and Applications
Poincare Journal of Analysis and Applications Mathematics-Applied Mathematics
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信