{"title":"Two generalized derivations on Lie ideals in prime rings","authors":"Ashutosh Pandey, B. Prajapati","doi":"10.24330/ieja.1281636","DOIUrl":null,"url":null,"abstract":"Let $R$ be a prime ring of characteristic not equal to $2$, $U$ be the Utumi quotient ring of $R$ and $C$ be the extended centroid of $R$. Let $G$ and $F$ be two generalized derivations on $R$ and $L$ be a non-central Lie ideal of $R$. If $F\\Big(G(u)\\Big)u = G(u^{2})$ for all $u \\in L$, then one of the following holds: \n\n(1) $G=0$.\n(2) There exist $p,q \\in U$ such that $G(x)=p x$, $F(x)=qx$ for all $x \\in R$ with $qp=p$.\n(3) $R$ satisfies $s_4$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1281636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Let $R$ be a prime ring of characteristic not equal to $2$, $U$ be the Utumi quotient ring of $R$ and $C$ be the extended centroid of $R$. Let $G$ and $F$ be two generalized derivations on $R$ and $L$ be a non-central Lie ideal of $R$. If $F\Big(G(u)\Big)u = G(u^{2})$ for all $u \in L$, then one of the following holds:
(1) $G=0$.
(2) There exist $p,q \in U$ such that $G(x)=p x$, $F(x)=qx$ for all $x \in R$ with $qp=p$.
(3) $R$ satisfies $s_4$.
期刊介绍:
The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.