Two generalized derivations on Lie ideals in prime rings

IF 0.5 Q3 MATHEMATICS
Ashutosh Pandey, B. Prajapati
{"title":"Two generalized derivations on Lie ideals in prime rings","authors":"Ashutosh Pandey, B. Prajapati","doi":"10.24330/ieja.1281636","DOIUrl":null,"url":null,"abstract":"Let $R$ be a prime ring of characteristic not equal to $2$, $U$ be the Utumi quotient ring of $R$ and $C$ be the extended centroid of $R$. Let $G$ and $F$ be two generalized derivations on $R$ and $L$ be a non-central Lie ideal of $R$. If $F\\Big(G(u)\\Big)u = G(u^{2})$ for all $u \\in L$, then one of the following holds: \n\n(1) $G=0$.\n(2) There exist $p,q \\in U$ such that $G(x)=p x$, $F(x)=qx$ for all $x \\in R$ with $qp=p$.\n(3) $R$ satisfies $s_4$.","PeriodicalId":43749,"journal":{"name":"International Electronic Journal of Algebra","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Electronic Journal of Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24330/ieja.1281636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let $R$ be a prime ring of characteristic not equal to $2$, $U$ be the Utumi quotient ring of $R$ and $C$ be the extended centroid of $R$. Let $G$ and $F$ be two generalized derivations on $R$ and $L$ be a non-central Lie ideal of $R$. If $F\Big(G(u)\Big)u = G(u^{2})$ for all $u \in L$, then one of the following holds: (1) $G=0$. (2) There exist $p,q \in U$ such that $G(x)=p x$, $F(x)=qx$ for all $x \in R$ with $qp=p$. (3) $R$ satisfies $s_4$.
素环中李理想的两个广义导数
设$R$是特征不等于$2$的素数环,$U$是$R$的Utumi商环,$C$是$R的扩展质心。设$G$和$F$是$R$上的两个广义导子,$L$是$R的非中心李理想。如果对于L$中的所有$u\,$F\Big(G(u)\Big)u=G(u^{2})$,则下列条件之一成立:(1)$G=0$。(2) U$中存在$p,q\,使得$G(x)=px$,$F(x)=qx$适用于R$中所有$x\,$qp=p$。(3) $R$满足$s_4$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.90
自引率
16.70%
发文量
36
审稿时长
36 weeks
期刊介绍: The International Electronic Journal of Algebra is published twice a year. IEJA is reviewed by Mathematical Reviews, MathSciNet, Zentralblatt MATH, Current Mathematical Publications. IEJA seeks previously unpublished papers that contain: Module theory Ring theory Group theory Algebras Comodules Corings Coalgebras Representation theory Number theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信