New procedure to estimate plasma parameters through the q-Weibull distribution by using a Langmuir probe in a cold plasma

IF 1.3 Q3 ORTHOPEDICS
F. J. Gonzalez, J. I. Gonzalez, S. Soler, C. Repetto, B. J. Gómez, D. Berdichevsky
{"title":"New procedure to estimate plasma parameters through the q-Weibull distribution by using a Langmuir probe in a cold plasma","authors":"F. J. Gonzalez, J. I. Gonzalez, S. Soler, C. Repetto, B. J. Gómez, D. Berdichevsky","doi":"10.1088/2516-1067/ac4f35","DOIUrl":null,"url":null,"abstract":"We describe a procedure to obtain the plasma parameters from the I-V Langmuir curve by using the Druyvesteyn equation. We propose to include two new parameters, q and r, to the usual plasma parameters: plasma potential (V p ), floating potential (V f ), electron density (n), and electron temperature (T). These new parameters can be particularly useful to represent non-Maxwellian distributions. The procedure is based on the fit of the I-V Langmuir curve with the q-Weibull distribution function, and is motivated by recent works which use the q-exponential distribution function derived from Tsallis statistics. We obtain the usual plasma parameters employing three techniques: the numerical differentiation using Savitzky Golay (SG) filters, the q-exponential distribution function, and the q-Weibull distribution function. We explain the limitations of the q-exponential function, where the experimental data V > V p needs to be trimmed beforehand, and this results in a lower accuracy compared to the numerical differentiation with SG. To overcome this difficulty, the q-Weibull function is introduced as a natural generalization to the q-exponential distribution, and it has greater flexibility in order to represent the concavity change around V p . We apply this procedure to analyze the measurements corresponding to a nitrogen N 2 cold plasma obtained by using a single Langmuir probe located at different heights from the cathode. We show that the q parameter has a very stable numerical value with the height. This work may contribute to clarify some advantages and limitations of the use of non-extensive statistics in plasma diagnostics, but the physical interpretation of the non-extensive parameters in plasma physics remains not fully clarified, and requires further research.","PeriodicalId":36295,"journal":{"name":"Plasma Research Express","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Research Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/2516-1067/ac4f35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ORTHOPEDICS","Score":null,"Total":0}
引用次数: 2

Abstract

We describe a procedure to obtain the plasma parameters from the I-V Langmuir curve by using the Druyvesteyn equation. We propose to include two new parameters, q and r, to the usual plasma parameters: plasma potential (V p ), floating potential (V f ), electron density (n), and electron temperature (T). These new parameters can be particularly useful to represent non-Maxwellian distributions. The procedure is based on the fit of the I-V Langmuir curve with the q-Weibull distribution function, and is motivated by recent works which use the q-exponential distribution function derived from Tsallis statistics. We obtain the usual plasma parameters employing three techniques: the numerical differentiation using Savitzky Golay (SG) filters, the q-exponential distribution function, and the q-Weibull distribution function. We explain the limitations of the q-exponential function, where the experimental data V > V p needs to be trimmed beforehand, and this results in a lower accuracy compared to the numerical differentiation with SG. To overcome this difficulty, the q-Weibull function is introduced as a natural generalization to the q-exponential distribution, and it has greater flexibility in order to represent the concavity change around V p . We apply this procedure to analyze the measurements corresponding to a nitrogen N 2 cold plasma obtained by using a single Langmuir probe located at different heights from the cathode. We show that the q parameter has a very stable numerical value with the height. This work may contribute to clarify some advantages and limitations of the use of non-extensive statistics in plasma diagnostics, but the physical interpretation of the non-extensive parameters in plasma physics remains not fully clarified, and requires further research.
用Langmuir探针在冷等离子体中通过q-Weibull分布估计等离子体参数的新方法
我们描述了使用Druyvesteyn方程从I-V Langmuir曲线获得等离子体参数的过程。我们建议在通常的等离子体参数中加入两个新的参数q和r:等离子体电势(Vp)、浮动电势(Vf)、电子密度(n)和电子温度(T)。这些新参数对于表示非麦克斯韦分布特别有用。该程序基于I-V Langmuir曲线与q-Weibull分布函数的拟合,并受到最近使用从Tsallis统计量导出的q-指数分布函数的工作的推动。我们使用三种技术获得了通常的等离子体参数:使用Savitzky Golay(SG)滤波器的数值微分、q指数分布函数和q威布尔分布函数。我们解释了q指数函数的局限性,其中实验数据V>Vp需要预先修剪,这导致与SG的数值微分相比精度较低。为了克服这一困难,引入了q威布尔函数作为q指数分布的自然推广,并且它具有更大的灵活性以便表示围绕Vp的凹度变化。我们将该程序应用于分析通过使用位于阴极不同高度的单个Langmuir探针获得的与氮N2冷等离子体相对应的测量结果。我们证明了q参数随高度的变化具有一个非常稳定的数值。这项工作可能有助于阐明在等离子体诊断中使用非广泛统计学的一些优势和局限性,但等离子体物理学中非广泛参数的物理解释尚未完全阐明,需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plasma Research Express
Plasma Research Express Energy-Nuclear Energy and Engineering
CiteScore
2.60
自引率
0.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信