{"title":"Electronic properties of SmxSr1−xMnO3 for solid oxide fuel cell application — a first-principles study","authors":"S. Vijayalakshmi, S. Mahalakshmi, M. Muthujothi","doi":"10.1142/s2047684121500251","DOIUrl":null,"url":null,"abstract":"Electronic properties of orthorhombic SSM ([Formula: see text] and monoclinic SSM ([Formula: see text] are investigated using the first-principles calculation. The half-metallic behavior that leads to the mixed ionic and electronic conductivity (MIEC) property is identified in orthorhombic SSM. In addition, the strong covalent bonding between [Formula: see text]-p and [Formula: see text]-s orbitals of orthorhombic SSM is identified from the PDOS plot. The strong covalent bonding enhances the [Formula: see text] molecular adsorption on Mn atom. On the other hand, monoclinic SSM shows the pure conducting behavior and there is no covalent bonding between Mn and O atoms. Thus, the results suggest that the half-metal Sm[Formula: see text]Sr[Formula: see text]MnO3 might be a suitable cathode material for intermediate-temperature solid oxide fuel cells.","PeriodicalId":45186,"journal":{"name":"International Journal of Computational Materials Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computational Materials Science and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s2047684121500251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Electronic properties of orthorhombic SSM ([Formula: see text] and monoclinic SSM ([Formula: see text] are investigated using the first-principles calculation. The half-metallic behavior that leads to the mixed ionic and electronic conductivity (MIEC) property is identified in orthorhombic SSM. In addition, the strong covalent bonding between [Formula: see text]-p and [Formula: see text]-s orbitals of orthorhombic SSM is identified from the PDOS plot. The strong covalent bonding enhances the [Formula: see text] molecular adsorption on Mn atom. On the other hand, monoclinic SSM shows the pure conducting behavior and there is no covalent bonding between Mn and O atoms. Thus, the results suggest that the half-metal Sm[Formula: see text]Sr[Formula: see text]MnO3 might be a suitable cathode material for intermediate-temperature solid oxide fuel cells.