Holistic Prescriptive Analytics for Continuous and Constrained Optimization Problems

D. Bertsimas, O. Skali Lami
{"title":"Holistic Prescriptive Analytics for Continuous and Constrained Optimization Problems","authors":"D. Bertsimas, O. Skali Lami","doi":"10.1287/ijoo.2022.0080","DOIUrl":null,"url":null,"abstract":"We present a holistic framework for prescriptive analytics. Given side data x, decisions z, and uncertain quantities y that are functions of x and z, we propose a framework that simultaneously predicts y and prescribes the “should be” optimal decisions [Formula: see text]. The algorithm can accommodate a large number of predictive machine learning models as well as continuous and discrete decisions of high cardinality. It also allows for constraints on these decision variables. We show wide applicability and strong computational performances on synthetic experiments and on two real-world case studies.","PeriodicalId":73382,"journal":{"name":"INFORMS journal on optimization","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INFORMS journal on optimization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/ijoo.2022.0080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a holistic framework for prescriptive analytics. Given side data x, decisions z, and uncertain quantities y that are functions of x and z, we propose a framework that simultaneously predicts y and prescribes the “should be” optimal decisions [Formula: see text]. The algorithm can accommodate a large number of predictive machine learning models as well as continuous and discrete decisions of high cardinality. It also allows for constraints on these decision variables. We show wide applicability and strong computational performances on synthetic experiments and on two real-world case studies.
连续和约束优化问题的整体规定分析
我们提出了一个规范分析的整体框架。给定侧数据x、决策z和不确定量y作为x和z的函数,我们提出了一个框架,该框架可以同时预测y并规定“应该是”最优决策[公式:见文本]。该算法可以适应大量的预测机器学习模型以及高基数的连续和离散决策。它还允许对这些决策变量进行约束。我们在合成实验和两个现实世界的案例研究中显示了广泛的适用性和强大的计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信