Analysis of Novel 4D Rabinovich-Fabrikant Continuous Dynamical System with Coexistence Attractors

IF 1 Q1 MATHEMATICS
Maysoon M. Aziz, Ghassan. E. Arif, Ahmad T. Ahmad
{"title":"Analysis of Novel 4D Rabinovich-Fabrikant Continuous Dynamical System with Coexistence Attractors","authors":"Maysoon M. Aziz, Ghassan. E. Arif, Ahmad T. Ahmad","doi":"10.29020/nybg.ejpam.v16i3.4857","DOIUrl":null,"url":null,"abstract":"In this paper a new Rabinovitch-Fabrikant (R-F) four dimensional (4D) continuous time dynamical system was generated from three dimensional (3D) Rabinovitch-Fabrikant dynamical system using the state augmentation technique by adding new state variables u. The system employs thirteen terms includes five cross-product terms and one irreversible function. The dynamical behaviors of the system were investigated which include equilibrium points, stability analysis, wave form analysis, phase space analysis, multistability, Hopf-bifurcation, the Lyapunov exponent and Lyapunov dimension. The values of Lyapunov exponents are:L1 = 14.025946, L2 = 0.295151, L3 = −2.854401, L4 = −13.736833. and Lyapunov dimension is (3.83474), so the system is unstable and hyperchaotic with coexistence attractors. Chaos was handled in two ways: adaptive control and adaptive synchronization, it was found that the new system is stable and achieved good results.","PeriodicalId":51807,"journal":{"name":"European Journal of Pure and Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2023-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pure and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29020/nybg.ejpam.v16i3.4857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper a new Rabinovitch-Fabrikant (R-F) four dimensional (4D) continuous time dynamical system was generated from three dimensional (3D) Rabinovitch-Fabrikant dynamical system using the state augmentation technique by adding new state variables u. The system employs thirteen terms includes five cross-product terms and one irreversible function. The dynamical behaviors of the system were investigated which include equilibrium points, stability analysis, wave form analysis, phase space analysis, multistability, Hopf-bifurcation, the Lyapunov exponent and Lyapunov dimension. The values of Lyapunov exponents are:L1 = 14.025946, L2 = 0.295151, L3 = −2.854401, L4 = −13.736833. and Lyapunov dimension is (3.83474), so the system is unstable and hyperchaotic with coexistence attractors. Chaos was handled in two ways: adaptive control and adaptive synchronization, it was found that the new system is stable and achieved good results.
具有共存吸引子的4D Rabinovich-Fabrikant连续动力系统的分析
本文利用状态增广技术,通过添加新的状态变量u,从三维Rabinovich-Fabrikant动力系统中生成了一个新的Rabinovitch-Fabrikat(R-F)四维(4D)连续时间动力系统。该系统使用了十三项,包括五个叉积项和一个不可逆函数。研究了系统的动力学行为,包括平衡点、稳定性分析、波形分析、相空间分析、多稳态、Hopf分岔、李雅普诺夫指数和李雅普诺维。李雅普诺夫指数的值为:L1=14.025946,L2=0.295151,L3=−2.854401,L4=−13.736833。Lyapunov维数为(3.83474),因此该系统是不稳定的、具有共存吸引子的超混沌系统。采用自适应控制和自适应同步两种方法对混沌进行处理,结果表明,新系统是稳定的,并取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
28.60%
发文量
156
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信