Predicting Region-Dependent Biases in a GOES-16 Machine Learning Precipitation Retrieval

IF 2.6 3区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES
Eric Goldenstern, C. Kummerow
{"title":"Predicting Region-Dependent Biases in a GOES-16 Machine Learning Precipitation Retrieval","authors":"Eric Goldenstern, C. Kummerow","doi":"10.1175/jamc-d-22-0089.1","DOIUrl":null,"url":null,"abstract":"\nDespite its long history, improving upon current precipitation estimation techniques remains an active area of research. While many methods exist to assess precipitation, the use of satellites has allowed for near-global observation. However, satellites do not directly sense precipitation, resulting in retrieval uncertainties. Analysis of these uncertainties is typically conducted through validation studies, which, while necessary, are sensitive to local conditions. As such, predicting retrieval uncertainties where there is no validation data remains a challenge. In this study, we propose a method by which validation statistics can be extended to other regions. Using a neural network–style retrieval, the Geostationary Operational Environmental Satellite–16 (GOES-16) Precipitation Estimator using Convolutional Neural Networks (GPE-CNN), we show that, by exploiting the information content of both the satellite and ancillary meteorological data, one can predict large-scale retrieval behaviors over other regions without the need for that region’s validation data. By developing classes using satellite information content, we demonstrate bias prediction improvement of up to 83% relative to a simple extension of mean bias. Including relative humidity information improves the overall prediction by up to 98% relative to the original mean bias. Although limited in scope, this method presents a pathway toward characterizing uncertainties on a broader scale.","PeriodicalId":15027,"journal":{"name":"Journal of Applied Meteorology and Climatology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Meteorology and Climatology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1175/jamc-d-22-0089.1","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Despite its long history, improving upon current precipitation estimation techniques remains an active area of research. While many methods exist to assess precipitation, the use of satellites has allowed for near-global observation. However, satellites do not directly sense precipitation, resulting in retrieval uncertainties. Analysis of these uncertainties is typically conducted through validation studies, which, while necessary, are sensitive to local conditions. As such, predicting retrieval uncertainties where there is no validation data remains a challenge. In this study, we propose a method by which validation statistics can be extended to other regions. Using a neural network–style retrieval, the Geostationary Operational Environmental Satellite–16 (GOES-16) Precipitation Estimator using Convolutional Neural Networks (GPE-CNN), we show that, by exploiting the information content of both the satellite and ancillary meteorological data, one can predict large-scale retrieval behaviors over other regions without the need for that region’s validation data. By developing classes using satellite information content, we demonstrate bias prediction improvement of up to 83% relative to a simple extension of mean bias. Including relative humidity information improves the overall prediction by up to 98% relative to the original mean bias. Although limited in scope, this method presents a pathway toward characterizing uncertainties on a broader scale.
GOES-16机器学习降水检索中区域相关偏差的预测
尽管其历史悠久,但改进现有的降水量估计技术仍然是一个活跃的研究领域。虽然有许多方法可以评估降水量,但卫星的使用允许进行近全球观测。然而,卫星不能直接感知降水,这导致了反演的不确定性。这些不确定性的分析通常通过验证研究进行,验证研究虽然必要,但对当地条件敏感。因此,在没有验证数据的情况下预测检索的不确定性仍然是一个挑战。在这项研究中,我们提出了一种方法,通过该方法可以将验证统计扩展到其他地区。使用神经网络风格的检索,使用卷积神经网络的地球静止运行环境卫星-16(GOES-16)降水量估计器,我们表明,通过利用卫星和辅助气象数据的信息内容,可以预测其他区域上的大规模检索行为,而不需要该区域的验证数据。通过使用卫星信息内容开发类,我们证明了相对于平均偏差的简单扩展,偏差预测提高了83%。相对于原始平均偏差,包括相对湿度信息可将总体预测提高98%。尽管范围有限,但该方法提供了一条在更大范围内表征不确定性的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Applied Meteorology and Climatology
Journal of Applied Meteorology and Climatology 地学-气象与大气科学
CiteScore
5.10
自引率
6.70%
发文量
97
审稿时长
3 months
期刊介绍: The Journal of Applied Meteorology and Climatology (JAMC) (ISSN: 1558-8424; eISSN: 1558-8432) publishes applied research on meteorology and climatology. Examples of meteorological research include topics such as weather modification, satellite meteorology, radar meteorology, boundary layer processes, physical meteorology, air pollution meteorology (including dispersion and chemical processes), agricultural and forest meteorology, mountain meteorology, and applied meteorological numerical models. Examples of climatological research include the use of climate information in impact assessments, dynamical and statistical downscaling, seasonal climate forecast applications and verification, climate risk and vulnerability, development of climate monitoring tools, and urban and local climates.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信